-
丝网印刷、凹版印刷、UV印刷、胶印、数码印刷、热转印、烫金/烫银工艺的原理流程及应用
丝网印刷、凹版印刷、UV印刷、胶印、数码印刷、热转印、烫金/烫银工艺的原理流程及应用设计师了解印刷工艺非常重要,它决定了设计的实际呈现效果。熟悉工艺能帮助设计师选择合适的印刷方式,确保色彩、细节精准呈现,避免成品偏差。同时,了解工艺还能优化成本和制作时间,提升沟通效率,是设计专业能力的关键。本文将详细介绍丝网印刷、凹版印刷、UV印刷、胶印、数码印刷、热转印、烫金/烫银工艺的原理、流程、特色及应用。 1. 丝网印刷(Screen Printing) 基本原理与工艺流程 丝网印刷是一种孔版印刷技术,其基本原理是利用丝网作为版基,通过感光制版方法制成带有图文的丝网印版。在印刷过程中,油墨在刮板的挤压下,通过图文部分的网孔转移到承印物上,形成与原稿一样的图文。工艺流程大致分为以下几个步骤:准备网框和感光膜,清洗网框并除去油污。 曝光,将感光膜与底版在晒版机内压紧,用光源进行曝光。 显影,用温水浸润网膜,用水喷头喷淋,去除非感光部分。 贴膜,将曝光显影后的菲林膜面贴在丝网上,确保膜与网接触牢固。 烘干,将贴好膜的丝网放置在烘箱内烘干,以备印刷。 应用领域与特点 丝网印刷的应用领域非常广泛,包括但不限于以下行业:玻璃包装行业:用于玻璃容器制品上的文字或图案印刷。 塑料包装行业:塑料薄膜的包装印刷,保护物品免受外界影响。 金属包装行业:金属容器的包装印刷,要求油墨附着力强、耐摩擦。 纸类包装行业:纸张上的图案印刷,提高产品包装档次。 陶瓷包装行业:陶瓷制品上的图案印刷,增加美感。 丝网印刷的特点包括:适应性强: 能在平面、曲面、球面及凹凸面上印刷。 墨层厚实: 丝网印刷的墨层厚度一般可达30μm,立体感强。 色彩鲜艳: 使用各种油墨及涂料,色彩表现力强。 耐光性强: 适合室外广告、标牌等长时间暴露在阳光下的印刷品。 印刷幅面灵活: 可进行大面积或超小型、超高精度的特种物品印刷。 操作简便: 设备简单、操作方便,适合个体手工生产和机械化生产。 丝网印刷因其独特的优势,在装潢印刷中被称为“装潢印刷大王”,适用于多种材料的印刷,是应用范围广泛的印刷方式之一。 2. 凹版印刷(Gravure Printing) 印刷原理与特点 凹版印刷是一种直接印刷方式,其核心原理是利用凹版上的图文部分凹陷来存储油墨,并通过印刷机的压力将油墨转移到承印物上,形成清晰的图案和文字。印刷原理:凹版印刷的印版是关键,其图文部分低于非图文部分,形成凹陷的印纹。 油墨被填充到这些凹陷的印纹中,而非图文部分则保持清洁。 在印刷过程中,印刷机的压力使得凹陷中的油墨转移到承印物上,形成所需的图文。 特点:墨层厚实: 凹版印刷的墨层厚度通常比其他印刷方式要厚,可以达到20μm以上,使得印刷品色彩更加鲜艳和立体。 色彩鲜艳: 由于墨层厚实,凹版印刷能够实现高饱和度的色彩效果,适合印刷高质量的彩色图像。 耐印力高: 凹版印刷的印版耐用性强,可以承受数百万次的印刷,适合大批量生产。 适用范围广: 凹版印刷适用于多种承印物,包括纸张、塑料薄膜、金属箔等,能够满足不同产品的印刷需求。 连续印刷: 凹版印刷机可以进行高速连续印刷,适合长版印刷品的生产。 防伪性能好: 凹版印刷常用于有价证券、防伪标签等产品的印刷,因为其印刷图案难以复制。 应用范围 凹版印刷因其独特的优势,被广泛应用于多个领域:包装印刷: 凹版印刷在包装行业中的应用十分广泛,尤其是在塑料软包装、纸盒、标签等产品的印刷上,能够提供高质量的印刷效果。 出版印刷: 在欧美地区,凹版印刷常用于报纸、邮递广告等大批量印刷品的生产。 有价证券印刷: 凹版印刷因其良好的防伪性能,适用于货币、邮票、证券等有价证券的印刷。 装饰印刷: 在装饰材料上,如墙纸、装饰材料等,凹版印刷能够印刷出连续的图案,增加产品的美观性。 工业印刷: 在工业领域,凹版印刷用于印刷电路板、电子产品的装饰膜等,因其精细的线条和厚实的墨层而受到青睐。 凹版印刷的高耐印力和色彩鲜艳的特点使其在长版印刷中具有显著的成本优势,尽管其制版成本较高,但对于大批量印刷而言,单位印刷成本较低,因此在市场上占据重要地位。 3. UV印刷(UV Printing) UV油墨与固化技术 UV印刷技术的核心在于UV油墨和固化过程。UV油墨是一种特殊的配方油墨,其关键成分在紫外线照射下能够迅速固化形成皮膜。UV油墨的组成:预聚物:作为油墨的主要组成部分,通常占油墨总量的50-70%。 单体:作为活性稀释剂,调节油墨的粘度和改善油墨的印刷性能。 光引发剂:在紫外线照射下产生自由基,引发预聚物和单体的聚合反应。 颜料:提供油墨的颜色,可以是有机或无机颜料。 固化过程:UV固化是一种光化学反应,液态的UV油墨在紫外线照射下迅速固化。 固化速度受多种因素影响,包括UV光源的强度、波长、油墨层厚度、承印材料的透光性等。 UV灯的功率密度对固化效果至关重要,一般常用规格有40W/cm至2000W/cm不等。 固化设备:UV灯类型: 包括汞灯和LED冷光源灯,后者因其低能耗、长寿命和快速启动优势逐渐成为主流。 散热方式: 风扇型和水冷型,前者维护简单但可能导致印刷材料热变形,后者散热效果好但维护复杂。 优势与局限性 UV印刷技术在现代印刷行业中具有明显的优势,但也存在一些局限性。优势:快速固化:UV油墨在紫外线照射下瞬间固化,显著提高了生产效率。 环保性:UV油墨不含挥发性有机化合物(VOCs),对环境友好。 适用性广:UV印刷适用于多种承印材料,包括非吸收性和吸收性材料。 高光泽度:UV固化后的墨层具有高光泽和耐磨擦、耐腐蚀的特性。 节省空间:无需传统印刷中的喷粉和长时间干燥,节省了印刷后处理空间。 局限性:成本: UV油墨和固化设备的成本相对较高,增加了生产成本。 技术要求: 对操作环境的温度、湿度有特定要求,需要精确控制以保证印刷质量。 油墨附着力: UV油墨在固化过程中可能产生较大的内应力,影响油墨对承印材料的附着力。 设备维护: UV灯管有使用寿命限制,需要定期更换,且维护成本较高。 色彩表现: 在某些材质上,UV印刷的色彩饱和度可能不如传统油墨。 综上所述,UV印刷技术以其快速、环保和高光泽的特点,在包装印刷、高端商业印刷等领域展现出强大的市场竞争力。然而,成本和技术要求较高,限制了其在某些应用场景中的普及。随着技术的不断进步,预计UV印刷将在未来的印刷行业中占据更加重要的地位。4. 胶印(Offset Printing) 间接印刷原理 胶印,也称为平版印刷,是一种广泛应用的间接印刷技术。其核心原理基于油墨和水的相互排斥性质,通过图文部分与非图文部分的相互作用,实现印刷图文的传递。印刷原理:胶印的印版是平的,图文部分和空白部分处于同一平面,但表面能不同。图文部分亲油疏水,而空白部分亲水疏油。 在印刷过程中,首先由润版水辊给印版滚筒亲水非图文部分涂上润版液,然后由多个传墨辊给印版辊筒亲油(亲墨)图文部分上墨。 油墨和润版液在印版上形成稳定的分布,随后,油墨通过印版辊筒转移到橡皮布辊筒,在压印滚筒的作用下,再由橡皮布辊筒转移到承印物上,形成印刷品。 特点:胶印是一种间接印刷方式,油墨先转移到橡皮布上,再转移到纸张或其他承印物上。 胶印可以实现高质量的印刷效果,图文清晰、色彩鲜艳,适用于大批量生产。 胶印机可以处理多种承印物,如纸张、塑料、金属等,具有广泛的适用性。 胶印采用水墨平衡技术,通过精确控制油墨和润版液的量,保证印刷质量。 质量控制与应用 胶印的质量控制是确保印刷品质的关键环节,涉及到印刷压力、水墨平衡、套印精度等多个方面。质量控制:印刷压力: 适当的印刷压力确保油墨的均匀转移,避免印迹模糊或压力过大导致的纸张损坏。 水墨平衡: 精确控制润版液的pH值和用量,保证油墨的稳定传递和印版的清洁。 套印精度: 通过精确的设备调整和监控,确保多色印刷时各色版套印准确,避免色彩失真。 色彩管理: 使用色彩控制系统,确保印刷色彩的一致性和准确性,满足客户的高标准要求。 印刷材料: 选择合适的纸张和油墨,不同纸张的吸墨性和表面特性会影响印刷效果。 应用领域:包装印刷: 胶印在包装行业中的应用广泛,如食品包装、化妆品包装、药品包装等,提供精美的视觉效果和良好的印刷质量。 出版印刷: 图书、杂志、报纸等出版物的印刷,胶印能够满足大批量、高质量的生产需求。 商业印刷: 名片、信纸、信封等商业印刷品,胶印提供稳定和高效的印刷服务。 广告印刷: 广告牌、海报、宣传册等,胶印能够实现高清晰度和色彩鲜艳的印刷效果,吸引目标受众的注意力。 胶印技术以其高效率、高质量和广泛的适用性,在印刷行业中占据重要地位。通过严格的质量控制和不断的技术创新,胶印将继续在各种印刷应用中发挥关键作用。5. 数码印刷(Digital Printing) 数码印刷技术与特点 数码印刷是一种采用数字技术进行印刷的生产方式,它通过数字文件直接控制印刷机,无需制版,可以实现快速、灵活的印刷服务。技术特点:数字文件直接印刷: 数码印刷无需传统制版过程,数字文件直接传输到印刷设备,实现快速印刷。 可变数据印刷: 每张印刷品都可以不同,适合个性化印刷需求,如可变条形码、个性化图像等。 即时印刷: 数码印刷机可以即时调整印刷参数,适应不同订单需求,缩短生产周期。 小批量印刷成本效益: 无需大规模制版,小批量印刷成本较低,适合按需印刷。 色彩管理: 数码印刷机配备高精度的色彩管理系统,保证色彩的一致性和准确性。 环保性: 数码印刷过程中无需使用化学药剂,产生的废品和废水较少,对环境影响小。 技术优势:快速响应: 数码印刷可以快速调整印刷参数,适应紧急订单和快速变化的市场需求。 个性化服务: 满足个性化印刷需求,为客户提供定制化服务,增加产品附加值。 灵活的印刷选项: 数码印刷可以轻松处理各种文件格式,支持多种承印物,提供多样化的印刷选择。 成本效益: 小批量印刷和按需印刷的成本效益高,适合短版印刷和测试市场反应。 色彩一致性: 数码印刷机的色彩管理系统确保每次印刷的色彩一致性,满足高标准的印刷质量要求。 个性化印刷应用 个性化印刷是数码印刷技术的重要应用领域,它满足了市场对个性化产品的需求,为客户提供定制化的印刷服务。应用领域:个性化礼品: 如定制T恤、杯子、相册、贺卡等,消费者可以根据自己的喜好设计图案和文字。 商业宣传品: 个性化的宣传册、名片、海报等,帮助企业提升品牌形象和市场竞争力。 包装印刷: 个性化包装可以提升产品的独特性和识别度,吸引消费者注意。 出版物: 如个性化图书、杂志、年报等,提供定制化的出版服务。 标签和吊牌: 个性化标签和吊牌可以用于产品标识、品牌宣传等。 市场趋势:消费者需求增长: 随着消费者对个性化产品的需求增加,个性化印刷市场将持续增长。 技术进步: 数码印刷技术的进步,如印刷速度提升、成本降低,将进一步推动个性化印刷市场的发展。 环保意识提升: 环保型数码印刷技术将更受欢迎,因为它减少了印刷过程中的环境污染。 网络印刷服务: 网络印刷平台的兴起,使得个性化印刷服务更加便捷和普及。 数码印刷技术的发展为个性化印刷提供了强大的支持,使得印刷服务更加灵活、高效和环保。随着市场需求的增长和技术的不断进步,个性化印刷将在未来的印刷行业中扮演更加重要的角色。 6. 热转印(Heat Transfer Printing) 转印工艺与材料 热转印是一种将图案或文字通过热压力转移到承印物表面的印刷技术。该技术的核心在于热转印油墨和特殊的转印纸或膜。转印工艺:热升华转印: 利用升华油墨印刷在特殊纸张上,通过高温高压将油墨中的染料转移到承印物中,形成渗透效果。 热转印烫画: 在PET片材上印刷图案,并在背面涂布热熔胶,通过热压将图案和胶层转移到承印物上,形成一层附着在表面的图像。 材料:转印纸/膜: 特殊的转印纸或膜,表面涂有热转印油墨,是转印过程中的关键材料。 热转印油墨: 含有能够升华的染料或颜料,以及连接料和添加剂,用于印刷在转印纸上。 热熔胶: 用于热转印烫画,将图案牢固地粘附在承印物上。 工艺流程:设计图案并制作成转印纸或膜。 调整热转印设备至适当的温度和压力。 将转印纸或膜与承印物对齐,放入热转印设备。 加热加压,使油墨中的染料转移到承印物中或热熔胶将图案粘附在承印物上。 冷却后取出转印好的产品,完成转印。 特点:适用性广:适用于多种材料,如塑料、金属、陶瓷、织物等。 色彩鲜艳:转印后的图案色彩饱满,还原度高。 耐久性强:热转印后的图案具有较好的耐水洗和耐摩擦性。 操作简便:适合小批量生产和个性化定制。 应用领域 热转印技术因其独特的优势,在多个行业中得到广泛应用。服装行业:在T恤、帽子、鞋子等服饰上转印个性化图案和文字,满足个性化需求。家居装饰:在杯子、盘子、瓷砖等家居用品上转印图案,增加产品的美观性和个性化。促销礼品:制作个性化的促销礼品,如印有公司logo的笔、笔记本等,增强企业形象。电子产品:在手机壳、电脑外壳等电子产品上转印装饰性图案,提升产品吸引力。户外广告:在广告牌、横幅上转印广告内容,提高广告的视觉效果。工业制造:在各种工业产品上转印标识、警告标签等,提高产品的识别度和安全性。防伪标签:制作防伪标签和全息图,用于产品防伪和品牌保护。热转印技术以其灵活的定制能力和广泛的适用性,在现代印刷行业中扮演着越来越重要的角色。随着技术的进步和市场的发展,热转印的应用领域将进一步扩大。 7. 烫金/烫银(Foil Stamping) 烫印工艺与材料 烫金/烫银是一种传统的印刷装饰工艺,通过在纸张或其他承印物上施加金属箔,形成具有金属光泽的图案或文字,增强印刷品的美观性和豪华感。烫印工艺:准备烫金版: 将设计好的图案通过雕刻或化学蚀刻的方式制作成烫金版。 放置烫金箔: 将烫金箔放置在承印物上,对齐图案。 烫印: 通过烫金机施加温度和压力,使烫金箔与承印物粘合。 冷却与剥离: 烫印完成后,冷却并剥离多余的烫金箔,完成烫印。 烫印材料:烫金箔: 通常由多层材料构成,包括基材(如PE)、分离涂层、颜色涂层、金属涂层(如镀铝)和胶水涂层。 烫金机: 包括加热和压力装置,用于将烫金箔转移到承印物上。 承印物: 可以是纸张、塑料、皮革、布料等,不同的承印物可能需要不同的烫印条件。 烫印效果:金属光泽:烫金/烫银提供了独特的金属光泽,使印刷品显得高端大气。 立体感:烫金/烫银后的图案具有一定的立体感,增加了印刷品的视觉效果。 防伪功能:特殊的烫金工艺可以用于防伪标签和有价证券,提高产品的安全性。 烫印效果与应用 烫金/烫银工艺因其独特的装饰效果,在多个领域内得到了广泛应用。应用领域:奢侈品包装:如高档化妆品、酒类、烟草等产品的包装,提升产品的市场定位。 书籍封面:在精装书和特殊版书籍的封面上使用烫金/烫银,增加书籍的收藏价值。 商务印刷品:如名片、请柬、证书等,提升印刷品的正式感和专业感。 服装行业:在服装标签和装饰品上使用烫金/烫银,增加服装的时尚感。 电子产品:如手机壳、电脑外壳等,提升产品的美观度和品牌识别度。 市场趋势:个性化需求增长: 随着消费者对个性化产品的需求增加,烫金/烫银工艺在个性化印刷品中的应用将持续增长。 技术进步: 烫金/烫银技术不断进步,如冷烫金技术的发展,使得烫金/烫银工艺更加环保和高效。 环保意识提升: 环保型烫金/烫银材料和工艺将更受欢迎,减少对环境的影响。 网络印刷服务: 网络印刷平台的兴起,使得烫金/烫银服务更加便捷和普及。 烫金/烫银工艺以其独特的金属光泽和高端的装饰效果,在现代印刷行业中扮演着重要的角色。随着技术的进步和市场的发展,烫金/烫银的应用领域将进一步扩大。总结设计师需要了解印刷工艺,因为它是确保设计作品从数字稿件到实际成品完美呈现的重要环节。每种印刷工艺都有其独特的优点和限制,理解这些差异能够帮助设计师更有效地实现设计意图。了解这些差异,设计师可以更好地针对项目需求选择合适的工艺,确保设计效果如预期般展现。同时,不同的印刷工艺对材料、颜色、分辨率等有不同要求。设计师只有了解这些细节,才能在设计阶段做出相应调整,避免在印刷中出现颜色偏差、模糊或失真等问题。例如,丝网印刷适用于厚重油墨效果,可以在T恤、包装上呈现独特的触觉和视觉质感,而凹版印刷则更适合高品质的图像和渐变效果。此外,掌握印刷工艺还能帮助设计师控制成本,优化时间。熟悉烫金、UV印刷等特殊工艺的设计师能通过选择合适工艺,在预算内实现更具冲击力的视觉效果。因此,对印刷工艺的了解不仅提升了设计师的专业能力,还确保设计作品从创意到成品的完美落地。
2025-07-01
-
丝网印刷法
丝网印刷法 丝网印刷法是指利用丝网镂孔版和印料,经刮印得到图形的方法,简称丝印法。丝印法制得的图形精度低于光化法,但工序简单,生产效率高,成本低,适用于大量生产。 简介丝网印刷始于19世纪末期,是常见的四大印刷方式之一。印刷时通过刮板的挤压,使油墨通过图文部分的网孔转移到承印物上,形成与原稿一样的图文。丝网印刷设备简单、操作方便,印刷、制版简易且成本低廉,适应性强。与其他三种方式不同,它不仅仅可以进行平面上的印刷,同时,由于丝网可以部分包裹住三维的物体,所以这就使得丝网印刷能够在已经制好的成型产品上印刷图像和文字。近年来,丝网印刷得到了迅速的发展,被称之为“装潢印刷大王”。 丝网印刷属于孔版印刷,它与平印、凸印、凹印一起被称为四大印刷方法。孔版印刷包括誊写版、镂孔花版、喷花和丝网印刷等。孔版印刷的原理是:印版(纸膜版或其它版的版基上制作出可通过油墨的孔眼)在印刷时,通过一定的压力使油墨通过孔版的孔眼转移到承印物(纸张、陶瓷等)上,形成图象或文字。 印刷时通过刮板的挤压,使油墨通过图文部分的网孔转移到承印物上,形成与原稿一样的图文。丝网印刷设备简单、操作方便,印刷、制版简易且成本低廉,适应性强。丝网印刷常见的应用有:彩色油画、招贴画、名片、装帧封面、商品标牌、指示标志以及印染纺织品等。 原理丝网印刷由五大要素构成,即丝网印版、刮印刮板、油墨、印刷台以及承印物。 丝网印刷基本原理是:利用丝网印版图文部分网孔透油墨,非图文部分网孔不透墨的基本原理进行印刷。印刷时在丝网印版一端倒入油墨,用刮印刮板在丝网印版上的油墨部位施加一定压力,同时朝丝网印版另一端移动。油墨在移动中被刮板从图文部分的网孔中挤压到承印物上。由于油墨的黏性作用而使印迹固着在一定范围之内,印刷过程中刮板始终与丝网印版和承印物呈线接触,接触线随刮板移动而移动。由于丝网印版与承印物之间保持一定的间隙,使得印刷时的丝网印版通过自身的张力而产生对刮板的反作用力,这个反作用力称为回弹力。由于回弹力的作用,使丝网印版与承印物只呈移动式线接触,而丝网印版其鬈 篙未雾雩寨品物为脱离状态,使油墨与丝网发生断裂运动,保证了印刷尺寸精度和避免蹭金 脏承印物。当刮板刮过整个版面后抬起,同时丝网印版也抬起,并将油墨轻刮回初始位置。至此为一个印刷行程 特点①印刷适应性强。平印、凹印、凸印三大印刷方法一般只能在平面承印物上进行印刷,而丝网印刷不仅能在平面上印刷,还可以在曲面、球面及凹凸面的承印物上进行印刷。另一方面,由于丝网印版版面柔软且具有一定的弹性,印刷压力又小,所以,丝网印刷不但可以在硬质材料上印刷,还可以在软质材料及易碎的物体上印刷,不受承印物的质地限制。除此之外,丝网印刷除了直接印刷外,还可以根据需要采用间接印刷方法印制,即先在明胶或硅胶版上进行丝网印刷,再转印到承印物上。因此,丝网印刷适应性很强,应用范围广泛。 ②墨层厚实,立体感强。不同印刷方式其承印物上的墨层厚度是不一样的,胶印和凸印的墨层厚度一般约为5μm,凹印约为12μm,柔性版印刷约为12μm,而丝网印刷的墨层厚度远远超过了上述墨层的厚度,一般可达30μm左右。专门印刷电路板用的厚膜丝网印刷,墨层厚度可达1000μm,用发泡油墨印制盲文点字,发泡后墨层厚度达300μm。丝网印刷墨层厚,立体感强,这是其他印刷方法不能相比的。 丝网印刷不仅可以单色印刷,还可以进行套色和加网彩色印刷。 ③耐光性能强,色彩鲜艳。由于丝网印刷具有漏印的特点,所以它可以使用各种油墨及涂料,不仅可以使用浆料、黏结剂及各种颜料,也可以使用颗粒较粗的涂料。除此之外。丝网印刷油墨调配方法简便,例如。把耐光颜料直接放入油墨中调配,可使丝网印刷产品具有较强耐光性,更适合于在室外作广告、标牌之用。 ④印刷幅面大。一般凸例子、胶印等印刷方法的印刷幅面最大为全张或双全张,超过这一尺寸,就受到机械设备的限制。而丝网印刷可以进行大面积印刷,当今丝网印刷产品最大幅面可达3×4㎡,甚至更大。丝网印刷还能在超小型、超高精度的特种物品上进行印刷。这种特性使丝网印刷有着很大的灵活性和广泛的适用性。 与平版胶印相比,丝网印刷的局限性在于层次再现范围较小。彩色印刷色彩稳定性较难控制,套印误差也较大,印刷精细产品有一定难度。 应用丝网印刷应用的范围是非常广泛的。除水和空气以外{包括其他液体和气体),任何一种物体都可以作为承印物。有人评价丝网印刷时曾这样说过:如果你想在地球上找到理想的印刷方式,达到印刷目的,那很可能就是丝网印刷法。具体地说丝网印刷主要应用在下述几方面: 纸类印刷:美术印刷(广告、画刊,日历、灯笼纸)、商标印刷、转印印刷、包装印刷、建材印刷(糊墙纸): 塑料印刷:塑料胶片(乙烯玩具、书包、塑料袋)、塑料标盘(假金属复合材料及各种标盘)、生产零件(仪器件); 木制品印刷:工艺品(漆器、木制工艺品、玩具)、加工半制成品(体育用品、木板、天花板、路标、招牌、假金属板、广告牌); 金属制品印刷:金属简、金属器皿、金属制品; 玻璃、陶瓷制品印刷:玻璃(镜子、玻璃板、杯子,瓶子)、陶瓷(器皿、工艺品); 标牌:文字说明板、刻度盘、成形物品; 线路板印刷:印刷线路板、民用或工业用基板、厚膜集成线路板: 印染:印染(旗帜、布匹、毛巾、手帕、衬衫、背心、针织品)、其他印刷(口袋、鞋、号码布以及各种箱包、背包、提包、书包); 皮革制品印刷:服装(衣服、鞋、皮带、书包、钱包)。
2025-07-01
-
压力注塑
压力注塑是一种注射兼模塑的成型方法,生产速度快、效率高。注射成型又称注射模塑成型,它是一种注射兼模塑的成型方法。注射成型方法其优点是生产速度快、效率高,操作可实现自动化,能成型形状复杂的制件。不利的一面是模具成本高,且清理困难,所以小批量制品就不宜采用此法成型。用这种方法成型的制品有:电视机外壳、半导体收音机外壳、电器上的接插件、旋纽、线圈骨架、齿轮、汽车灯罩、茶杯、饭碗、皂盒、浴缸、凉鞋等等。 注射成型适用于全部热塑性塑料,其成型周期短,花色品种多,形状可以由简到繁,尺寸可以由大到小,而且制品尺寸精确,产品易更新换代。
2025-07-01
-
吹塑:塑料加工方法
吹塑:塑料加工方法 也称中空吹塑,一种发展迅速的塑料加工方法。吹塑工艺在第二次世界大战期间,开始用于生产低密度聚乙烯小瓶。50年代后期,随着高密度聚乙烯的诞生和吹塑成型机的发展,吹塑技术得到了广泛应用。中空容器的体积可达数千升,有的生产已采用了计算机控制。适用于吹塑的塑料有聚乙烯、聚氯乙烯、聚丙烯、聚酯等,所得之中空容器广泛用作工业包装容器。 根据型坯制作方法,吹塑可分为挤出吹塑和注射吹塑,新发展起来的有多层吹塑和拉伸吹塑。 基本信息 热塑性树脂经挤出或注射成型得到的管状塑料型坯,趁热(或加热到软化状态),置于对开模中,闭模后立即在型坯内通入压缩空气,使塑料型坯吹胀而紧贴在模具内壁上,经冷却脱模,即得到各种中空制品。吹塑薄膜的制造工艺在原理上和中空制品吹塑十分相似,但它不使用模具,从塑料加工技术分类的角度,吹塑薄膜的成型工艺通常列入挤出中。吹塑工艺在第二次世界大战期间,开始用于生产低密度聚乙烯小瓶。50年代后期,随着高密度聚乙烯的诞生和吹塑成型机的发展,吹塑技术得到了广泛应用。中空容器的体积可达数千升,有的生产已采用了计算机控制。适用于吹塑的塑料有聚乙烯、聚氯乙烯、聚丙烯、聚酯等,所得之中空容器广泛用作工业包装容器。 塑料模具常识 挤出吹塑是一种制造中空热塑性制件的方法。广为人知的吹塑对象有瓶、桶、罐、箱以及所有包装食品、饮料、化妆品、药品和日用品的容器。大的吹塑容器通常用于化工产品、润滑剂和散装材料的包装上。其他的吹塑制品还有球、波纹管和玩具。对于汽车制造业,燃料箱、轿车减震器、座椅靠背、中心托架以及扶手和头枕覆盖层均是吹塑的。对于机械和家具制造业,吹塑零件有外壳、门框架、制架、陶罐或到有一个开放面的箱盒。 聚合物 最普通的吹塑挤塑料原料是高密度聚乙烯,大部分牛奶瓶是使用这种聚合物制成的。其他聚烯烃也常通过吹塑来加工。根据用途,苯乙烯聚合物、聚氯乙烯、聚酯、聚氨酯、聚碳酸酯和其他热塑性塑料也可以用来吹塑。 最近工程塑料在汽车行业被广泛接受。 挤出工艺是强迫物料通过一个孔或模具来制造产品。 挤出吹塑工艺由5步组成:1.塑料型胚(中空塑料管的挤出);2.在型胚上将瓣合模具闭合,夹紧模具并切断型胚;3.向模腔的冷壁吹胀型培,调整开口并在冷却期间保持一定的压力;4.打开模具,卸下被吹的零件;5.修整飞边得到成品。 挤塑 聚合物混配备定义为通过熔体混合使聚合物或聚合物体系提高等级的一种过程。混配过程从单一添加剂的加入到多种添加剂处理、聚合物合金和反应性混培,其范围甚广。据估计,美国三分之一的聚合物生产要经过混配。混配料可根据最终应用的性能要求进行定制。混配产品具有杂混的性能,例如高光泽和优良的抗冲击强度,或精密模塑性和良好的刚度。 混配好的聚合物通常被切粒用于进一步加工。然而工业上越来越感兴趣的是将混配与下一步过程结合起来,例如型材挤出,这样可避免再次加热聚合物。 混合 人们使用各种类型的熔体混合设备,从辊炼机和分批混合机到单螺杆和双螺杆挤塑机。连续混配给(挤塑机)是最常用的设备,因为他可提供质量一致的产品,并且可降低操作费用。有两种混合类型:分布式混合品料在混配料中无需采用高剪切应力就可以均匀地分布。这类混合液被称为延伸性混合或层流性混合。 分散式混合 亦称强力混合,其中施加高剪切应力来打碎内聚成团的固体。例如当添加剂料团被打碎时,实际的颗粒尺寸就变小了。 混配操作经常在一个过程中需要两种混合类型。 吹塑适用范围 一般常见的是人们日常用品例如:瓶子,罐子,婴儿用品,体育用品等等
2025-07-01
-
铸造工艺最全详解!
铸造工艺最全详解! 液态金属浇注到与零件形状、尺寸相适应的铸型型腔中,待其冷却凝固,以获得毛坯或零件的生产方法,通常称为金属液态成形或铸造。 工艺流程:液体金属→充型→凝固收缩→铸件 工艺特点: 1、可生产形状任意复杂的制件,特别是内腔形状复杂的制件。 2、适应性强,合金种类不受限制,铸件大小几乎不受限制。 3、材料来源广,废品可重熔,设备投资低。 4、废品率高、表面质量较低、劳动条件差。 铸造分类 : (1)砂型铸造(sand casting) 砂型铸造:在砂型中生产铸件的铸造方法。钢、铁和大多数有色合金铸件都可用砂型铸造方法获得。 工艺流程:砂型铸造工艺流程 技术特点: 1、适合于制成形状复杂,特别是具有复杂内腔的毛坯; 2、适应性广,成本低; 3、对于某些塑性很差的材料,如铸铁等,砂型铸造是制造其零件或,毛坯的唯一的成形工艺。 应用:汽车的发动机气缸体、气缸盖、曲轴等铸件 (2)熔模铸造(investmentcasting) 熔模铸造:通常是指在易熔材料制成模样,在模样表面包覆若干层耐火材料制成型壳,再将模样熔化排出型壳,从而获得无分型面的铸型,经高温焙烧后即可填砂浇注的铸造方案。常称为“失蜡铸造”。 工艺流程:熔模铸造工艺流程 工艺特点 优点: 1、尺寸精度和几何精度高; 2、表面粗糙度高; 3、能够铸造外型复杂的铸件,且铸造的合金不受限制。 缺点:工序繁杂,费用较高 应用:适用于生产形状复杂、精度要求高、或很难进行其它加工的小型零件,如涡轮发动机的叶片等。 (3)压力铸造(die casting)压铸:是利用高压将金属液高速压入一精密金属模具型腔内,金属液在压力作用下冷却凝固而形成铸件。 工艺流程:工艺特点 优点: 1、压铸时金属液体承受压力高,流速快 2、产品质量好,尺寸稳定,互换性好; 3、生产效率高,压铸模使用次数多; 4、适合大批大量生产,经济效益好。 缺点: 1、铸件容易产生细小的气孔和缩松。 2、压铸件塑性低,不宜在冲击载荷及有震动的情况下工作; 3、高熔点合金压铸时,铸型寿命低,影响压铸生产的扩大。 应用:压铸件最先应用在汽车工业和仪表工业,后来逐步扩大到各个行业,如农业机械、机床工业、电子工业、国防工业、计算机、医疗器械、钟表、照相机和日用五金等多个行业。 (4)低压铸造(low pressure casting) 低压铸造:是指使液体金属在较低压力(0.02~0.06MPa)作用下充填铸型,并在压力下结晶以形成铸件的方法.。 工艺流程:技术特点: 1、浇注时的压力和速度可以调节,故可适用于各种不同铸型(如金属型、砂型等),铸造各种合金及各种大小的铸件; 2、采用底注式充型,金属液充型平稳,无飞溅现象,可避免卷入气体及对型壁和型芯的冲刷,提高了铸件的合格率; 3、铸件在压力下结晶,铸件组织致密、轮廓清晰、表面光洁,力学性能较高,对于大薄壁件的铸造尤为有利; 4、省去补缩冒口,金属利用率提高到90~98%; 5、劳动强度低,劳动条件好,设备简易,易实现机械化和自动化。 应用:以传统产品为主(气缸头、轮毂、气缸架等)。 (5)离心铸造(centrifugal casting) 离心铸造:是将金属液浇入旋转的铸型中,在离心力作用下填充铸型而凝固成形的一种铸造方法。工艺特点 优点: 1、几乎不存在浇注系统和冒口系统的金属消耗,提高工艺出品率; 2、生产中空铸件时可不用型芯,故在生产长管形铸件时可大幅度地改善金属充型能力; 3、铸件致密度高,气孔、夹渣等缺陷少,力学性能高; 4、便于制造筒、套类复合金属铸件。 缺点: 1、用于生产异形铸件时有一定的局限性; 2、铸件内孔直径不准确,内孔表面比较粗糙,质量较差,加工余量大; 3、铸件易产生比重偏析。 应用: 离心铸造最早用于生产铸管,国内外在冶金、矿山、交通、排灌机械、航空、国防、汽车等行业中均采用离心铸造工艺,来生产钢、铁及非铁碳合金铸件。其中尤以离心铸铁管、内燃机缸套和轴套等铸件的生产最为普遍。 (6)金属型铸造(gravity die casting) 金属型铸造:指液态金属在重力作用下充填金属铸型并在型中冷却凝固而获得铸件的一种成型方法。 工艺流程:工艺特点 优点: 1、金属型的热导率和热容量大,冷却速度快,铸件组织致密,力学性能比砂型铸件高15%左右。 2、能获得较高尺寸精度和较低表面粗糙度值的铸件,并且质量稳定性好。 3、因不用和很少用砂芯,改善环境、减少粉尘和有害气体、降低劳动强度。 缺点: 1、金属型本身无透气性,必须采用一定的措施导出型腔中的空气和砂芯所产生的气体; 2、金属型无退让性,铸件凝固时容易产生裂纹; 3、金属型制造周期较长,成本较高。因此只有在大量成批生产时,才能显示出好的经济效果。 应用:金属型铸造既适用于大批量生产形状复杂的铝合金、镁合金等非铁合金铸件,也适合于生产钢铁金属的铸件、铸锭等。 (7)真空压铸(vacuumdie casting) 真空铸造:通过在压铸过程中抽除压铸模具型腔内的气体而消除或显著减少压铸件内的气孔和溶解气体,从而提高压铸件力学性能和表面质量的先进压铸工艺。工艺特点 优点: 1、消除或减少压铸件内部的气孔,提高压铸件的机械性能和表面质量,改善镀覆性能; 2、减少型腔的反压力,可使用较低的比压及铸造性能较差的合金,有可能用小机器压铸较大的铸件; 3、改善了充填条件,可压铸较薄的铸件; 缺点: 1、模具密封结构复杂,制造及安装较困难,因而成本较高; 2、 真空压铸法如控制不当,效果就不是很显著。 (8)挤压铸造(squeezing die casting) 挤压铸造:是使液态或半固态金属在高压下凝固、流动成形,直接获得制件或毛坯的方法。它具有液态金属利用率高、工序简化和质量稳定等优点,是一种节能型的、具有潜在应用前景的金属成形技术。直接挤压铸造:喷涂料、浇合金、合模、加压、保压、泄压,分模、毛坯脱模、复位; 间接挤压铸造:喷涂料、合模、给料、充型、加压、保压、泄压,分模、毛坯脱模、复位。 技术特点: 1、可消除内部的气孔、缩孔和缩松等缺陷; 2、表面粗糙度低,尺寸精度高; 3、可防止铸造裂纹的产生; 4、便于实现机械化、自动化。 应用:可用于生产各种类型的合金,如铝合金、锌合金、铜合金、球墨铸铁等 (9)消失模铸造(Lost foam casting ) 消失模铸造(又称实型铸造):是将与铸件尺寸形状相似的石蜡或泡沫模型粘结组合成模型簇,刷涂耐火涂料并烘干后,埋在干石英砂中振动造型,在负压下浇注,使模型气化,液体金属占据模型位置,凝固冷却后形成铸件的新型铸造方法。 工艺流程:预发泡→发泡成型→浸涂料→烘干→造型→浇注→落砂→清理 技术特点: 1、铸件精度高,无砂芯,减少了加工时间; 2、无分型面,设计灵活,自由度高; 3、清洁生产,无污染; 4、降低投资和生产成本。 应用:适合成产结构复杂的各种大小较精密铸件,合金种类不限,生产批量不限。如灰铸铁发动机箱体、高锰钢弯管等。 (10)连续铸造(continual casting) 连续铸造:是一种先进的铸造方法,其原理是将熔融的金属,不断浇入一种叫做结晶器的特殊金属型中,凝固(结壳)了的铸件,连续不断地从结晶器的另一端拉出,它可获得任意长或特定的长度的铸件。 工艺流程:技术特点: 1、由于金属被迅速冷却,结晶致密,组织均匀,机械性能较好; 2、节约金属,提高收得率; 3、简化了工序,免除造型及其它工序,因而减轻了劳动强度;所需生产面积也大为减少; 4、连续铸造生产易于实现机械化和自动化,提高生产效率。 应用:用连续铸造法可以浇注钢、铁、铜合金、铝合金、镁合金等断面形状不变的长铸件,如铸锭、板坯、棒坯、管子等。
2025-07-01
-
铸造的定义及类型
铸造 液态金属浇注到与零件形状、尺寸相适应的铸型型腔中,待其冷却凝固,以获得毛坯或零件的生产方法,通常称为金属液态成形或铸造。 工艺流程:液体金属→充型→凝固收缩→铸件 工艺特点: 1、可生产形状任意复杂的制件,特别是内腔形状复杂的制件。 2、适应性强,合金种类不受限制,铸件大小几乎不受限制。 3、材料来源广,废品可重熔,设备投资低。 4、废品率高、表面质量较低、劳动条件差。 铸造分类 : (1)砂型铸造(sand casting) 砂型铸造:在砂型中生产铸件的铸造方法。钢、铁和大多数有色合金铸件都可用砂型铸造方法获得。 技术特点: 1、适合于制成形状复杂,特别是具有复杂内腔的毛坯; 2、适应性广,成本低; 3、对于某些塑性很差的材料,如铸铁等,砂型铸造是制造其零件或,毛坯的唯一的成形工艺。 应用:汽车的发动机气缸体、气缸盖、曲轴等铸件 (2)熔模铸造(investmentcasting) 熔模铸造:通常是指在易熔材料制成模样,在模样表面包覆若干层耐火材料制成型壳,再将模样熔化排出型壳,从而获得无分型面的铸型,经高温焙烧后即可填砂浇注的铸造方案。常称为“失蜡铸造”。优点: 1、尺寸精度和几何精度高; 2、表面粗糙度高; 3、能够铸造外型复杂的铸件,且铸造的合金不受限制。 缺点:工序繁杂,费用较高 应用:适用于生产形状复杂、精度要求高、或很难进行其它加工的小型零件,如涡轮发动机的叶片等。 (3)压力铸造(die casting)压铸:是利用高压将金属液高速压入一精密金属模具型腔内,金属液在压力作用下冷却凝固而形成铸件。 工艺流程:工艺特点 优点: 1、压铸时金属液体承受压力高,流速快 2、产品质量好,尺寸稳定,互换性好; 3、生产效率高,压铸模使用次数多; 4、适合大批大量生产,经济效益好。 缺点: 1、铸件容易产生细小的气孔和缩松。 2、压铸件塑性低,不宜在冲击载荷及有震动的情况下工作; 3、高熔点合金压铸时,铸型寿命低,影响压铸生产的扩大。 应用:压铸件最先应用在汽车工业和仪表工业,后来逐步扩大到各个行业,如农业机械、机床工业、电子工业、国防工业、计算机、医疗器械、钟表、照相机和日用五金等多个行业。 (4)低压铸造(low pressure casting)低压铸造:是指使液体金属在较低压力(0.02~0.06MPa)作用下充填铸型,并在压力下结晶以形成铸件的方法.。 工艺流程:技术特点: 1、浇注时的压力和速度可以调节,故可适用于各种不同铸型(如金属型、砂型等),铸造各种合金及各种大小的铸件; 2、采用底注式充型,金属液充型平稳,无飞溅现象,可避免卷入气体及对型壁和型芯的冲刷,提高了铸件的合格率; 3、铸件在压力下结晶,铸件组织致密、轮廓清晰、表面光洁,力学性能较高,对于大薄壁件的铸造尤为有利; 4、省去补缩冒口,金属利用率提高到90~98%; 5、劳动强度低,劳动条件好,设备简易,易实现机械化和自动化。 应用:以传统产品为主(气缸头、轮毂、气缸架等)。 (5)离心铸造(centrifugal casting)离心铸造:是将金属液浇入旋转的铸型中,在离心力作用下填充铸型而凝固成形的一种铸造方法。工艺特点 优点: 1、几乎不存在浇注系统和冒口系统的金属消耗,提高工艺出品率; 2、生产中空铸件时可不用型芯,故在生产长管形铸件时可大幅度地改善金属充型能力; 3、铸件致密度高,气孔、夹渣等缺陷少,力学性能高; 4、便于制造筒、套类复合金属铸件。 缺点: 1、用于生产异形铸件时有一定的局限性; 2、铸件内孔直径不准确,内孔表面比较粗糙,质量较差,加工余量大; 3、铸件易产生比重偏析。 应用: 离心铸造最早用于生产铸管,国内外在冶金、矿山、交通、排灌机械、航空、国防、汽车等行业中均采用离心铸造工艺,来生产钢、铁及非铁碳合金铸件。其中尤以离心铸铁管、内燃机缸套和轴套等铸件的生产最为普遍。 (6)金属型铸造(gravity die casting)金属型铸造:指液态金属在重力作用下充填金属铸型并在型中冷却凝固而获得铸件的一种成型方法。 工艺流程:工艺特点 优点: 1、金属型的热导率和热容量大,冷却速度快,铸件组织致密,力学性能比砂型铸件高15%左右。 2、能获得较高尺寸精度和较低表面粗糙度值的铸件,并且质量稳定性好。 3、因不用和很少用砂芯,改善环境、减少粉尘和有害气体、降低劳动强度。 缺点: 1、金属型本身无透气性,必须采用一定的措施导出型腔中的空气和砂芯所产生的气体; 2、金属型无退让性,铸件凝固时容易产生裂纹; 3、金属型制造周期较长,成本较高。因此只有在大量成批生产时,才能显示出好的经济效果。 应用:金属型铸造既适用于大批量生产形状复杂的铝合金、镁合金等非铁合金铸件,也适合于生产钢铁金属的铸件、铸锭等。 (7)真空压铸(vacuumdie casting)真空铸造:通过在压铸过程中抽除压铸模具型腔内的气体而消除或显著减少压铸件内的气孔和溶解气体,从而提高压铸件力学性能和表面质量的先进压铸工艺。 工艺流程:工艺特点 优点: 1、消除或减少压铸件内部的气孔,提高压铸件的机械性能和表面质量,改善镀覆性能; 2、减少型腔的反压力,可使用较低的比压及铸造性能较差的合金,有可能用小机器压铸较大的铸件; 3、改善了充填条件,可压铸较薄的铸件; 缺点: 1、模具密封结构复杂,制造及安装较困难,因而成本较高; 2、 真空压铸法如控制不当,效果就不是很显著。 (8)挤压铸造(squeezing die casting)挤压铸造:是使液态或半固态金属在高压下凝固、流动成形,直接获得制件或毛坯的方法。它具有液态金属利用率高、工序简化和质量稳定等优点,是一种节能型的、具有潜在应用前景的金属成形技术。 工艺流程:直接挤压铸造:喷涂料、浇合金、合模、加压、保压、泄压,分模、毛坯脱模、复位; 间接挤压铸造:喷涂料、合模、给料、充型、加压、保压、泄压,分模、毛坯脱模、复位。 技术特点: 1、可消除内部的气孔、缩孔和缩松等缺陷; 2、表面粗糙度低,尺寸精度高; 3、可防止铸造裂纹的产生; 4、便于实现机械化、自动化。 应用:可用于生产各种类型的合金,如铝合金、锌合金、铜合金、球墨铸铁等 (9)消失模铸造(Lost foam casting )消失模铸造(又称实型铸造):是将与铸件尺寸形状相似的石蜡或泡沫模型粘结组合成模型簇,刷涂耐火涂料并烘干后,埋在干石英砂中振动造型,在负压下浇注,使模型气化,液体金属占据模型位置,凝固冷却后形成铸件的新型铸造方法。 工艺流程:预发泡→发泡成型→浸涂料→烘干→造型→浇注→落砂→清理技术特点: 1、铸件精度高,无砂芯,减少了加工时间; 2、无分型面,设计灵活,自由度高; 3、清洁生产,无污染; 4、降低投资和生产成本。 应用:适合成产结构复杂的各种大小较精密铸件,合金种类不限,生产批量不限。如灰铸铁发动机箱体、高锰钢弯管等。 (10)连续铸造(continual casting)连续铸造:是一种先进的铸造方法,其原理是将熔融的金属,不断浇入一种叫做结晶器的特殊金属型中,凝固(结壳)了的铸件,连续不断地从结晶器的另一端拉出,它可获得任意长或特定的长度的铸件。 工艺流程:技术特点: 1、由于金属被迅速冷却,结晶致密,组织均匀,机械性能较好; 2、节约金属,提高收得率; 3、简化了工序,免除造型及其它工序,因而减轻了劳动强度;所需生产面积也大为减少; 4、连续铸造生产易于实现机械化和自动化,提高生产效率。 应用:用连续铸造法可以浇注钢、铁、铜合金、铝合金、镁合金等断面形状不变的长铸件,如铸锭、板坯、棒坯、管子等。
2025-07-01
-
连续铸造
连续铸造 连续铸造是一种先进的铸造方法,其原理是将熔融的金属,不断浇入一种叫做结晶器的特殊金属型中,凝固(结壳)了的铸件,连续不断地从结晶器的另一端拉出,它可获得任意长或特定的长度的铸件。发展连铸是我国冶金工业进行结构优化的重要手段,将使我国金属材料生产的低效率、高消耗现状得到根本改变,并推动产品结构向专业化方向发展。近终形连铸、单晶连铸、高效连铸、连铸坯热送热装等先进连铸技术的发展将非常活跃,而且将带动一系列新型材料的研制开发 。 简介 1个多世纪以来,在产业结构调整、原材料紧张、能源短缺、环境生态日益倍受关注、消费者要求更加苛求的压力下,传统工业特别是以钢铁和有色金属为代表的金属材料工业,一直在追求技术进步和进行设备改造。连续铸造技术作为钢铁和有色金属初坯生产中的1种广泛采用的工艺,其表现尤其引人注目。这种工艺虽然在生产中已经应用多年,但由于相对于型模铸造来说,它具有节约成本、改善铸锭品质、易于采用自动控制技术等优点 。 连续铸造的优点 连续铸造在国内外已经被广泛采用,如连续铸锭(钢或有色金属锭),连续铸管等。连续铸造和普通铸造比较有下述优点: 1、由于金属被迅速冷却,结晶致密,组织均匀,机械性能较好; 2、连续铸造时,铸件上没有浇注系统的冒口,故连续铸锭在轧制时不用切头去尾,节约了金属,提高了收得率; 3、简化了工序,免除造型及其它工序,因而减轻了劳动强度;所需生产面积也大为减少; 4、连续铸造生产易于实现机械化和自动化,铸锭时还能实现连铸连轧,大大提高了生产效率 。 连续铸造技术的发展状况 液态金属连续铸造的概念早在19世纪中叶就已提出。1840年Seller、在美国申请了连续铸锭铅管的专利。1846年Besseme:采用水冷、旋转双辊式连铸机生产了锡薄、铅板和玻璃板。随后,移动结晶器连续浇注的概念和垂直浇注的立式连铸法也相继提出。1933年连续铸造的先驱者德国人Junghans采用立式带振动结晶器的连铸机,首先浇注铜铝合金获得成功,使有色合金的连续铸造早在30年代就应用于生产。40年代,Junghans又建成第1台浇注钢液的试验连铸机。当时就已经开始研究振动的水冷结晶器、浸入式水口和保护浇注等技术,为现代连铸机奠定了基础。随后相继在美国、英国、奥地利、日本等国建成了中间性试验连铸机。在20世纪50年代,连续铸造技术仍处于工业试验阶段。60年代,连续铸造进入了工业应用阶段,许多连铸设备相继问世。70年代,连续铸造技术在能源紧张的压力下得到了迅猛的发展。80年代,连续铸造技术成为1种成熟的技术在冶金工业中得到了广泛采用。90年代,连续铸造技术又掀起了一场新的变革,许多新的连铸技术被先后提出,部分已处于开发试生产阶段。 在连续铸造的早、中期发展过程中,连铸设备和技术的日益完善和成熟,是与许多新技术的出现分不开的。其中代表性的技术有:(1)中间包快速更换技术;(2)采用钢包回转台实现多炉连铸技术;(3)结晶器在线调宽技术;(4)多点弯曲和矫直技术;(5)结晶器液面控制和漏钢预报技术;(6)无氧化浇注技术;(7)压缩浇注技术;(8)轻压下技术;(9)计算机自动控制技术;(10)气-水冷却、电磁搅拌应用等。 我国在连铸技术方面起步是比较早的。1957年第一台工业性试验铸机在上钢公司设计建成;次年年底,第一台生产性立式连续铸造机就在重钢三厂投产。60年代后,中国连铸技术开发与应用曾掀起一股高潮,突出表现在对弧形连铸技术的开发上。但在80年代以前,由于缺乏与国外的技术交流,不能及时有效地借鉴国外的先进技术,我国连铸生产技术水平与国外的差距被拉开。80年代中后期,国家对发展连铸技术给予高度重视。1988年召开了第一次全国连铸工作会议,首次提出了发展连铸的生产技术方针,明确了大力发展连铸的战略思想,成为加速发展连铸的转折点。 从1989年起,连铸坯产量的增长成为中国钢产量增长的主要部分。从1994年起,连铸坯产量的增长超过了钢产量增长的绝对量,带动了中国钢产量的迅速增长。1998年中国钢铁工业的连铸比达到67% 。 连铸技术发展的基本趋势 常规连续铸造技术在钢铁制造过程中已经全面取代了模铸,成为占统治地位的材料生产技术。就总的成品钢生产来讲,世界上大部分国家的连铸比已超过90% 。90年代后,连续铸造技术的发展出现了一些新的动向,主要表现在两个方面:一是开发和完善新的连铸技术;二是在连铸技术的基础上开发新材料。 总结 发展连铸是我国冶金工业进行结构优化的重要手段,将使我国金属材料生产的低效率、高消耗现状得到根本改变,并推动产品结构向专业化方向发展。近终形连铸、单晶连铸、高效连铸、连铸坯热送热装等先进连铸技术的发展将非常活跃,而且将带动一系列新型材料的研制开发
2025-07-01
-
连续铸造科普
简介 1个多世纪以来,在产业结构调整、原材料紧张、能源短缺、环境生态日益倍受关注、消费者要求更加苛求的压力下,传统工业特别是以钢铁和有色金属为代表的金属材料工业,一直在追求技术进步和进行设备改造。连续铸造技术作为钢铁和有色金属初坯生产中的1种广泛采用的工艺,其表现尤其引人注目。这种工艺虽然在生产中已经应用多年,但由于相对于型模铸造来说,它具有节约成本、改善铸锭品质、易于采用自动控制技术等优点。 连续铸造的优点连续铸造在国内外已经被广泛采用,如连续铸锭(钢或有色金属锭),连续铸管等。连续铸造和普通铸造比较有下述优点: 1、由于金属被迅速冷却,结晶致密,组织均匀,机械性能较好; 2、连续铸造时,铸件上没有浇注系统的冒口,故连续铸锭在轧制时不用切头去尾,节约了金属,提高了收得率; 3、简化了工序,免除造型及其它工序,因而减轻了劳动强度;所需生产面积也大为减少; 4、连续铸造生产易于实现机械化和自动化,铸锭时还能实现连铸连轧,大大提高了生产效率3。 连续铸造技术的发展状况液态金属连续铸造的概念早在19世纪中叶就已提出。1840年Seller、在美国申请了连续铸锭铅管的专利。1846年Besseme:采用水冷、旋转双辊式连铸机生产了锡薄、铅板和玻璃板。随后,移动结晶器连续浇注的概念和垂直浇注的立式连铸法也相继提出。1933年连续铸造的先驱者德国人Junghans采用立式带振动结晶器的连铸机,首先浇注铜铝合金获得成功,使有色合金的连续铸造早在30年代就应用于生产。40年代,Junghans又建成第1台浇注钢液的试验连铸机。当时就已经开始研究振动的水冷结晶器、浸入式水口和保护浇注等技术,为现代连铸机奠定了基础。随后相继在美国、英国、奥地利、日本等国建成了中间性试验连铸机。在20世纪50年代,连续铸造技术仍处于工业试验阶段。60年代,连续铸造进入了工业应用阶段,许多连铸设备相继问世。70年代,连续铸造技术在能源紧张的压力下得到了迅猛的发展。80年代,连续铸造技术成为1种成熟的技术在冶金工业中得到了广泛采用。90年代,连续铸造技术又掀起了一场新的变革,许多新的连铸技术被先后提出,部分已处于开发试生产阶段。 在连续铸造的早、中期发展过程中,连铸设备和技术的日益完善和成熟,是与许多新技术的出现分不开的。其中代表性的技术有:(1)中间包快速更换技术;(2)采用钢包回转台实现多炉连铸技术;(3)结晶器在线调宽技术;(4)多点弯曲和矫直技术;(5)结晶器液面控制和漏钢预报技术;(6)无氧化浇注技术;(7)压缩浇注技术;(8)轻压下技术;(9)计算机自动控制技术;(10)气-水冷却、电磁搅拌应用等。 我国在连铸技术方面起步是比较早的。1957年第一台工业性试验铸机在上钢公司设计建成;次年年底,第一台生产性立式连续铸造机就在重钢三厂投产。60年代后,中国连铸技术开发与应用曾掀起一股高潮,突出表现在对弧形连铸技术的开发上。但在80年代以前,由于缺乏与国外的技术交流,不能及时有效地借鉴国外的先进技术,我国连铸生产技术水平与国外的差距被拉开。80年代中后期,国家对发展连铸技术给予高度重视。1988年召开了第一次全国连铸工作会议,首次提出了发展连铸的生产技术方针,明确了大力发展连铸的战略思想,成为加速发展连铸的转折点。 从1989年起,连铸坯产量的增长成为中国钢产量增长的主要部分。从1994年起,连铸坯产量的增长超过了钢产量增长的绝对量,带动了中国钢产量的迅速增长。1998年中国钢铁工业的连铸比达到67%。 连铸技术发展的基本趋势常规连续铸造技术在钢铁制造过程中已经全面取代了模铸,成为占统治地位的材料生产技术。就总的成品钢生产来讲,世界上大部分国家的连铸比已超过90% 。90年代后,连续铸造技术的发展出现了一些新的动向,主要表现在两个方面:一是开发和完善新的连铸技术;二是在连铸技术的基础上开发新材料。 总结发展连铸是我国冶金工业进行结构优化的重要手段,将使我国金属材料生产的低效率、高消耗现状得到根本改变,并推动产品结构向专业化方向发展。近终形连铸、单晶连铸、高效连铸、连铸坯热送热装等先进连铸技术的发展将非常活跃,而且将带动一系列新型材料的研制开发。
2025-07-01
-
一文详解砂型铸造的工艺流程、原理、粘土湿型和不同类型的粘结剂
铸造制造是将液化材料(如熔融金属)倒入专门设计的模具型腔中并使其硬化的过程。凝固后,将工件从模具中取出,进行各种精加工处理或用作最终产品。铸造方法通常用于创建复杂的实心和空心形状,铸造产品应用广泛,包括汽车部件、航空航天部件等。 尽管铸造是已知最古老的制造技术之一,但铸造技术的现代进步导致了广泛的专业铸造方法。热成型工艺,如压铸、精密铸造、石膏铸造和砂型铸造等,每一种都具有自己独特的制造优势。比较常见铸造工艺的优缺点有助于选择最适合给定生产运行的方法。 根据铸型特点分类,有一次型铸造(砂型铸造、熔模铸造、石膏型铸造、实型铸造等)、半永久型铸造(陶瓷型铸造、石墨型铸造等)、永久型铸造(金属型铸造、压力铸造、挤压铸造、离心铸造等); 根据浇注时金属液的驱动力及压力状态分类,有重力作用下的铸造和外力作用下的铸造。金属液在重力驱动下完成浇注称自由浇注或常压浇注。金属液在外力作用下实现充填和补缩,如压力铸造、挤压铸造、离心铸造和反重力铸造等。 铸造方法分为两大类:砂型铸造和特种铸造。铸造业中砂型铸造约占80%。型砂中粘土砂、水玻璃砂和树脂砂等又占了90%的份额。三种型砂间的比例视各国具体情况而异,平均来看,大致为5:3:2。以型砂铸造与其它铸造方法相比,其缺点是:劳动条件较差,铸件外观质量欠佳;铸型只能使用一次,生产率低。优点是:不受零件形状、大小、复杂程度及合金种类的限制;造型材料来源广,生产准备周期短,成本低。因此,砂型铸造是铸造生产中应用最广泛的一种方法,世界各国用砂型铸造生产的铸件占总产量的80%~90%。 (一)砂型铸造概述 1.砂型铸造的特征及工艺流程 配制型砂—造型—合型—浇注—冷却—落砂—清理—检查—热处理—检验—获得铸件 特征:使用型砂构成铸型并进行浇注的方法,通常指在重力作用下的砂型铸造过程。 名词: 型砂——将原砂或再生砂+粘结剂+其它附加物等所混制成的混合物; 铸型——形成铸件外观轮廓的用型砂制成的空腔称为铸型; 砂芯——形成铸件内腔的用芯砂制成的实体(用于制做砂芯的型砂称为芯砂); 造型——制造砂型的工艺过程; 制芯——制造砂芯的工艺过程。 造型(芯)方法按机械化程度可分为手工造型(芯)和机器造型(芯)两大类。 选择合适的造型(芯)方法和正确的造型(芯)工艺操作,对提高铸件质量、降低成本、提高生产率有极重要的意义。 (1)手工造型(芯) 手工造型(芯)是最基本的方法,这种方法适应范围广,不需要复杂设备,而且造型质量一般能够满足工艺要求,所以,到目前为止,在单件、小批生产的铸造车间中,手工造型(芯)仍占很大比重。在航空、航天、航海领域应用广泛。手工造型(芯)劳动强度大,生产率低,铸件质量不易稳定,在很大程度上取决于工人的技术水平和熟练程度。手工造型方法很多,如模样造型、刮板造型、地坑造型,各种造型方法有不同的特点和应用范围。 (2)机器造型(芯) 用机器完成全部或部分造型工序,称为机器造型。和手工造型相比,机器造型生产率高,质量稳定,劳动强度低,对工人的技术要求不像手工造型那样高。但设备和工艺装备费用较高,生产准备时间长,一般适用于一个分型面的两箱造型。机器造型(芯)主要适用于黑色金属铸件的大批量生产。 2. 砂型/芯制造方法分类 在制造各砂型、芯的过程中,根据其本身建立强度时其粘结机理的不同,通常可分为三大类: (1)机械粘结剂型芯----以粘土为粘结剂的粘土型芯砂所产生的粘结; (2)化学粘结剂型芯----型芯砂在造型、芯过程中,依靠其粘结剂本身发生物理、化学反应达到硬化,从而建立强度,使砂粒牢固地粘结为一个整体。有机、无机粘结剂,其中无机粘结剂包括钠水玻璃及硅溶胶,而有机粘结剂则包括热硬、自硬和气硬树脂砂型(芯); (3)物理固结----指用物理学原理产生的力将不含粘结剂的原砂固结在一起,磁型铸造法、负压造型法或真实密封造型法或薄膜负压造型法,以及消失模造型法。 (二)原理 翻砂铸造的原理其实很简单,需要的零件首先会做出一个模型,这个模型被分为上下两个部分,即下半型和上半型。首先将下半型放到平板上,然后放上砂箱填满型砂,压紧刮平后,将砂型翻转180度,下半型被取出,形成一个空腔,这就是下砂箱。同样的方式做出上砂箱,然后将两者合好,做出一个完整的砂型,等待浇注。 浇注完之后,取开上下砂箱,即得到想要的零件毛坯。 (三)粘土湿型 1.湿型及其特点 (1)生产灵活性大,适用面广,既可手工,又可机器、以及流水线生产,既可生产大件,也可生产小件,可铸钢(中小件),也可铸铁,有色合金等。 (2)生产效率高,生产周期短,便于流水线生产,可实现机械化及自动化,汽车,柴油机,抢拖拉机行业应用最广(300~500kg铸铁薄裂件)。(汽车缸体图)(或生产车间全貌图) (3)原材料成本低,来源广。 (4)节省能源、烘干设备和车间生产场地面积。 (5)因不需烘干,砂箱寿命长。 (6)缺点:操作不当,易产生一些铸造缺陷:夹砂结疤,鼠尾,砂眼,胀砂,粘砂等。 2.粘土湿型所用的主要原材料 粘土湿型的配方为:原砂(或旧砂)100,粘土(膨润土)1~5%,煤粉~8%,水~6%,以及其它附加物。 (1)原砂-石英砂 其砂子是火成岩中稳定的部分,主要成分为二氧化硅(SiO2)和少量的杂质(Na,k,Ca,Fe等氧化物)。含SiO2极高的砂子称石英砂,有高的熔点,1700℃,摩氏硬度7级(一般将材料分为10级,其中滑石为1级,金刚石为10级),随夹杂物含量的增加,其耐火度下降,SiO2含量高,砂子的颜色接近无色透明,一般用石英砂色白并略带灰色。 铸造生产所用的石英砂与建筑用砂不同,它有其特殊的要求,主要有:含泥量;颗粒组成;原砂颗粒形状及表面状况;原砂的矿物组成和化学成分等。 生产中通常根据铸件的合金种类、质量、壁厚的不同来选定原砂的化学成分和矿物组成。例如铸钢的浇注温度高达1500℃左右,钢液含碳量较低,型腔中缺乏能防止金属氧化的强还原性气氛,与铸型相接触的界面上金属容易氧化生成FeO和其它金属氧化物,因而较易与型砂中的杂质进行化学反应而造成化学粘砂。所以要求原砂中Si02含量应较高,有害杂质亦应严格控制。铸钢件的浇注温度愈高,壁厚愈厚,则对原砂中Si02含量的要求就愈高。铸铁的浇注温度一般在1400℃以下,铁液中含有较多碳分,湿型浇注时型砂中加入有煤等附加物,能产生大量还原性气氛,在与铸型相接触的界面上金属基本不氧化,实际上湿型铸铁件无化学粘砂现象。 烧结点指的是原砂颗粒表面或砂粒间混合物开始熔化的温度。它是原砂各种组合成分耐火性能的综合反应。所以,有时采用测定原砂烧结点的办法能更直观地说明原砂做为耐火材料的性能,而且可用来推测原砂中SiO2含量高低和杂质多少。长石、云母及其杂质中所含有的碱金属氧化物(Na20、K20)、碱土金属氧化物(CaO、MgO)等能与Si02和氧化铁生成易熔物质。例如Si02与NaO的质量比为73:27的混合物,其熔点仅793℃.K2O与SiO2可形成熔点仅525℃低熔物, 烧结点低。 ( 2)原砂-非石英质原砂 硅砂缺点:热膨胀系数比较大,而且在573℃时会因相变而产生突然膨胀-----铸件若裂;热扩散率比较低;容易与铁的氧化物起作用等。这些都会对铸型与金属的界面反应起不良影响。在生产高合金钢铸件或大型铸钢件时,使用硅砂配制的型砂,铸件容易发生粘砂缺陷,使铸件的清砂十分困难。 非石英质原砂是指矿物组成中不含或只含少量游离Si02的原砂。在铸钢生产中已逐渐采用一些非石英质原砂来配制无机和有机化学粘结剂型砂、芯砂或涂料。这些材料与硅砂相比,大多数都具有较高的耐火度、热导率、热扩散率和蓄热系数,热膨胀系数低而且膨胀均匀,无体积突变,与金属氧化物的反应能力低等优点,能得到表面质量高的铸件并改善清砂劳动条件。但这些材料中有的价格较高,比较稀缺,故应当合理选用。 目前可用的非石英质原砂有橄榄石砂、锆砂、铬铁矿砂、石灰石砂、镁砂、刚玉砂、钛铁矿砂、铝矾土砂等。真正广泛使用的仍为石英砂。 (3)粘土----膨润土 粘土的矿物成分粘土是湿型砂的主要粘结剂。粘土被水湿润后具有粘结性和可塑性;烘干后硬结,具有干强度,而硬结的粘土加水后又能恢复粘结性和可塑性。粘土主要是由细小结晶质的粘土矿物所组成的土状材料。 粘土矿物的种类很多,按晶体结构可分为高岭石和蒙脱石等。通常根据所含粘土矿物种类不同将所采用的粘土分为铸造用粘土(fireclay)和铸造用膨润土(bentonite)两类。膨润土主要是由蒙脱石组矿物组成的,主要用于湿型铸造的型砂粘结剂。 根据国家专业标准《铸造用膨润土和粘土》(JBlT 9227—1999)的规定,膨润土中如果某一交换性阳离子量占阳离子交换容量的≥50%时,称其为主要交换性阳离子,如果为钠离子则称为钠膨润土,以PNa表示(P是膨润土代号);如果为钙离子,则称为钙膨润土,以PCa表示。我国钙基膨润土资源较多,开采和供应比较方便。有时要根据粘土的阳离子交换特性,对钙土进行处理,使之转变为钠基膨润土。这种离子交换过程,通常称为膨润土的活化处理,最常用的活化剂为碳酸钠。这一过程的化学反应机理简单示意如下 Ca2+一蒙脱石+Na2C03一-Na+一蒙脱石+CaC03+。 (4)粘土的粘结机理 粘土在水中形成的粘土-水体系是胶体,带负电的粘土颗粒将极性水分子吸引在自己的周围,形成胶团的水化膜,依靠粘土颗粒间的公共水化膜,通过其中的水化阳离子所起的“桥”或键的作用,使粘土颗粒相互结合起来,在水化膜中处在吸附层的水分子被粘土质点表面吸附得很紧,而处于扩散层中的水分子较松,公共水化膜就是粘土胶粒间的公共扩散层。粘土和水量比例适宜时,才能获得最佳的湿态粘结力(图)。一般说来,粘土颗粒所带电荷愈多或粘土颗粒愈细小,比表面积愈大,则湿粘结力愈大。 关于粘土颗粒与砂粒之间的粘结则被解释为:砂粒因自然破碎及其在混碾过程中产生新的破碎面而带微弱负电,也能使极性水分子在其周围规则地定向排列。这样,粘土颗粒与砂粒之间的公共水化膜,通过其中水化阳离子的“桥’’或键的作用,使粘土砂获得湿态强度。 (5)附加物 3.湿型砂的混制工艺及旧砂的处理 生产中常用的混砂机有碾轮式(vertical wheel sand muller)、摆轮式(horizontal wheel sand muller,speed muller)、叶片式(blade mixer)等。各有优缺点。 生产1t铸件约需要5-10t湿型型砂,配制型砂时都尽量回用旧砂(即重复使用过的型砂),即经济也是保护环境的需要。但简单地重复使用旧砂,会使型砂性能变坏,铸件质量下降。必须了解旧砂的特性,掌握其性能变化的规律,采取必要措施,才能保证和稳定型砂的性能。混砂时还需向旧砂中补充加入新砂、膨润土、煤粉和水等材料,才能使混制出的型砂性能符合要求。 4.粘土湿型的紧实工艺 (1)对型(芯)砂紧实度的要求 1)紧实度对铸型性能的影响 型砂需要紧实才能成为整体的砂型。型砂的紧实程度常用紧实度(密度)和孔隙度表示。紧实度影响着铸型的强度和透气性。紧实度越大,铸型强度越大,透气性越差。紧实度高,蓄热系数也高,加快了金属的凝固冷却速度,改善了铸件的内在质量,组织更为致密,铸件尺寸精确,力学性能有所提高。对高压造型法的研究表明,铸型紧实度高,浇注时型壁移动量小,铸件尺寸精确,表面光洁。因此,铸件可以做得更薄,进而减轻铸件机器重量。 2)型砂紧实度的要求 要求铸型紧实度高且均匀。高压造型法由于铸型紧实度高,其铸型性能和铸件质量普遍好于中低压造型。高压造型法的目的就在于制出均匀的高紧实度铸型。理论和实验研究证明其压实方法和压头形式对紧实度有很大的影响。对湿型而言,通常有震击紧实、震压紧实、压实、微震压实和高压紧实等,下面简单介绍其紧实方法。 (2)震击紧实和震压紧实 震击紧实用震击造型机来完成。多以压缩空气为动力,利用震击动能和惯性使型砂紧实如图2-3所示。将砂箱1放在模板2上,型板固定于震击工作台,与震击活塞3相连,4为震击气缸。砂箱内装满型砂后,打开进气阀,使压缩空气进入震击气缸,推动活塞上升。活塞升高超过排气孔时,压缩空气由排气孔逸出,气缸中的压力突然下降,此时震击活塞连同砂箱模板下落,与震击气缸发生撞击,砂箱中的型砂由于惯性力的作用而互相紧实。而后因出气孔堵住,进气孔进入的压缩空气压力超过砂箱型板活塞等的重量,使工作台上升,如此连续震击,使型砂得以紧实。震击高度一般为30~60mm,震击次数30~50/min次为宜,一般不超过80次。震击紧实适用于大砂箱,砂箱高度不低于150mm,否则紧实效果不好。其型砂紧实度沿砂箱高度是上松下紧,顶部型砂紧实度几乎与震前一样。 为了克服震击紧实砂箱上部型砂紧实度太松的缺点,可以先震击使底部型砂紧实,再对顶部型砂补充压实。这种经震击后再加压的造型机叫做震压造型机。震压紧实型砂的紧实度分布好,特别是在砂箱不太高的情况下,压实的影响可以达到分型面,这样可以大大减少震击次数,从而提高劳动生产率,节约能耗。但由于补加压实以压缩空气为动力,比压较低,故多用于中小砂箱的型砂紧实。震击造型机和震压造型机的结构都比较简单,操作维修方便,适用性强,一般中小型铸件都适用。但是震击式造型机工作时噪音太大,强烈的震动也对厂房建筑提出了较高的标准。 (3)压实、微震压实和高压紧实 压实紧实是通过压实造型机来完成的,多以压缩空气为动力对型砂压实紧实,其工作原理如图2-4所示。打开进气阀,压缩空气由进气孔进入压实气缸4,将活塞3举起,当砂箱2内的型砂碰到压头1时,就发生压实作用。型砂压实后,打开排气阀,气缸中的压缩空气排出,活塞立即下降,压实工作完成。这种紧实较震击紧实的效率高,噪音很小,机器结构也很简单。缺点是型砂紧实度不均匀,上紧下松。适用于砂箱高度不超过150mm而底面积一般不超过800×600mm的铸型。 微震压实造型是在型砂受压的同时,模板、砂箱和型砂作高频小振幅(10-13Hz,3-8mm,普通震击造型的震击频率和振幅分别为1.1-3.3Hz,30-80mm)的一种造型方法,其原理如图2-5所示。当压缩空气经过工作台的进气孔进入微震气缸后(图a),在压缩空气的压力作用下,微震活塞与固定在工作台上的模板、砂箱上升;同时压缩空气的压力还使微震气缸向下运动,压缩微压气缸下的弹簧(图b);当微震活塞上升至打开排气孔时(排气孔面积是进气孔的6~7倍),缸内气压迅速降低,工作台等靠自重下落,而微震气缸受弹簧作用上升,二者发生撞击(图c),使砂箱内的型砂获得一次紧实。这样多次重复,型砂就能较为迅速地达到预定的紧实度要求。 微震压实造型比单纯压实效果好,在相同压力下,能获得更高的紧实度,相当于提高比压30~50%,而且砂型的紧实度分布比较均匀;生产率高,每小时可达120箱以上,铸件质量较好;震击噪音小,劳动条件好,并可降低对厂房基础的要求;机器使用可靠,维修方便,价格也比较低廉。其主要缺点是仍有一定的噪音。微震压实造型在中小铸件的生产中已得到较为广泛的应用。(图2-5 气动微震造型工作原理) 上述压实造型是中低压压实,其压实比压为0.4MPa左右。近年来,国内外大量发展和采用高压压实造型机。用高压造型机造型时,由于压实比压提高到0.7Mpa以上,砂型硬度、紧实度和强度都大为提高,沿砂箱高度方向的紧实度分布得到有所改善,砂型轮廓清晰,可以得到尺寸比较准确的铸件(可达CT7~8级),表面光洁(Ramax=3.2~2.5μm);由于铸型紧实度高,蓄热系数也高,加快了金属凝固、冷却速度,改善了铸件内部质量,提高了力学性能;节约金属,减少加工余量及费用;压实紧砂工艺简单、生产率高(200~300箱砂型/h),易于机械化,噪音小,劳动强度低;适应性强,能制造复杂、较大的铸件。其缺点是机器结构复杂,生产线投资大;要求工艺装备精度高,刚性大;要求有较高的设备维修保养能力。高压造型适用于成批大量生产、砂箱尺寸较大、铸件较复杂及要求较小的尺寸公差和表面粗糙度低的铸件的生产。 (4)气流冲砂紧实 气流冲击紧实造型是将压力为0.4~0.6MPa的压缩空气以均匀的气流冲击型砂表面,使型砂紧实的造型新方法(图2-6)。铸型的紧实机构采用脉冲发生器(冲击头),其结构似储气罐(图2-6a),内有一小室3,室内压缩空气压力通常为0.4~0.6MPa,称为过剩压力。小室外部压缩空气压力通常比室内空气压力低0.1MPa,称为储气罐压力。砂箱7和辅助框6充满型砂,移到冲击头下边并被压紧后,打开单向快开阀2,室内压缩空气的过剩压力骤然下降,强制打开隔膜阀5,使压缩空气迅速加速而产生气流冲击,继而由于空气急剧膨胀而形成压力波,其速度可达800m/s以上;压力波在若干毫秒内穿透整个砂型,使砂型紧实。 气流冲击造型的主要优点是:砂型紧实度均匀,砂型硬度高,铸件尺寸精度和光洁程度都得到提高;造型机结构简单,噪音小;生产率高,劳动条件好;砂型充填性好,吃砂量少,可节约型砂及混砂能耗;适应性强,既可利用高压造型型砂,也可利用普通机器造型型砂。缺点是仍然有一定的噪音;砂箱或芯盒必须有足够的强度和刚度。 (四)钠水玻璃砂型 铸造生产中应用最广泛的无机化学粘结剂是钠水玻璃。此类型芯砂与粘土砂比较,有下列优点: 型(芯)砂流动性好,易于紧实,故造型(芯)劳动强度低。 硬化快,强度较高,可简化造型(芯)工艺,缩短生产周期,提高劳动生产率。 可在型(芯)硬化后起模,型、芯尺寸精度高。 可取消或缩短烘烤时间,降低能耗,改善工作环境和工作条件。 1.钠水玻璃粘结剂 水玻璃是各种聚硅酸盐水溶液的通称。铸造上最常用的是钠水玻璃(Sodiumsilicate water glass),因其便宜,来源充足;其次为钾水玻璃,此外还有锂水玻璃、钾钠水玻璃、季铵盐水玻璃等,分别是硅酸钠(Na20·mSi02)、硅酸钾(K20,nSi02)、硅酸锂(Li20·mSi02)、硅酸钾钠(mK20·Na20·nSi02)、季铵盐的水溶液。 硅酸钠是弱酸强碱盐,干态时为白色或灰白色团块或粉末,溶于水时,纯的钠水玻璃外观为无色粘稠液体,由于含铁盐而呈灰色或绿色,pH值一般在11-13。钠水玻璃的化学式为Na20·mSi02·nH20。 钠水玻璃有几个重要参数,直接影响它的化学和物理性质,也直接影响钠水玻璃砂的工艺性能,这就是钠水玻璃的模数、密度、含固量和粘度等。 模数 钠水玻璃中Si02和Na20的摩尔数之比称为模数,用M来表示。模数的大小仅表示钠水玻璃中SiO2、Na2O的摩尔数之比,并不表示钠水玻璃中硅酸钠的质量分数。但是模数改变,钠水玻璃结构及其物理—化学性质也会发生变化,因为模数的大小直接影响硅酸阴离子的聚合度,聚合度越高,模数也越大。模数越高,作为芯(型)砂粘结剂时的硬化速度也越快,达到最高强度的时间也越短。但过高的模数,将使芯(型)砂的保存性差,不适于造型和造芯。 钠水玻璃模数可以通过化学的方法降低或提高。降低钠水玻璃模数可加入适量的NaOH,以提高水玻璃中Na20的质量分数,从而相对地减少Si02的质量分数。铸造生产中,吹C02硬化时常用模数为2的钠水玻璃。 (2)密度、含固量和粘度 钠水玻璃的密度P取决于钠水玻璃中水的质量分数,而不是它的模数,因为Na2O (62)和Si02(60)(括号中数值为相对分子质量)的相对分子质量数值很近似。密度低,水的质量分数高,含固量少,不宜用作型(芯)砂粘结剂;反之,密度过大,粘稠,也不便定量和不利与砂子混合。铸造上通常采用密度为1.32-1.68g/cm3或波美度35-54的钠水玻璃。 2。钠水玻璃砂的硬化机理 硅酸钠是弱酸强碱盐,在水溶液中几乎完全电离,所以钠水玻璃实际是部分电离的聚硅酸负离子和钠离子在水中的分散体系。不同硅酸盐负离子的平衡是错综复杂的,它取决于pH值、模数和温度,在若干特有的反应过程中达到平衡。其中最有意义的反应是硅酸钠(以=Si-0-Na表示)的钠-氧键水解(hydrolysis)(向右进行)和酸-碱反应(向左进行).,硅氧烷链(Si-0-Si(siloxane linkage)沿线性方向生长,就形成高聚物(polymcr);当它在三维空间任意生长时,就形成凝胶(gel),这就导致了钠水玻璃的硬化。 如果没有任何胶凝作用的影响,钠水玻璃则可保存很长时间,但它对引起平衡变化的任何因素却非常敏感,这一潜在不稳定特性,通常被用来加速钠水玻璃的缩聚,以形成坚硬的三维的网状结构,使型砂粘结在一起。 铸造生产中常用的一些硬化方法,都是加入能直接或间接影响上述反应平衡点的气态、液态或粉状固化剂,与OH-作用,从而降低pH值,或靠失水,或靠上述二者的复合作用来达到硬化。 加热硬化----失水发生由液态到固态的转变 凡是能去除钠水玻璃中水分的方法,如加热烘干、吹热空气或干燥的压缩空气、真空脱水、微波照射以及加入产生放热反应的化合物等都可使钠水玻璃硬化。图是Na20、Si02和H20三元系统的常温状态图。其中铸造行业所用的商品液体钠水玻璃,是图中阴影部分(区域9,M=2.0—3.3,p=1.2—1.7g/cm3),当这种水玻璃与砂混合制成砂芯(型)时,如果用加热(或用热空气)方式硬化,会按图中带箭头虚线指示的方向,液体钠水玻璃先变成粘稠液体,接着成为半固体,再变成脱水液体。 化学反应形成新的产物 钠水玻璃在pH值大于10以上很稳定,加入适量酸性或具有潜在酸性的物质时,其pH值降低,稳定性下降,使水解和缩聚过程加速进行。 图为pH值对钠水玻璃胶凝时间的影响曲线,曲线呈大写“N”字形,即著名的“N曲线”。胶凝速度最快的pH值,亦即曲线的最低点在6.8到7.1之间;钠水玻璃稳定性最好、胶凝速度非常慢的pH值,也就是曲线的最高点,在3.2-3.9和10以上。 吹C02硬化 C02与钠水玻璃中的水作用形成碳酸 : CO2 + H20---- 2H+ + C032- 产生的H+使表面钠水玻璃的pH值不断降低,并达到迅速硬化。 钠水玻璃同C02反应,消耗Na20,把凝胶化的水玻璃推到图的不稳定液体和凝胶区域(图区域11)。这种Si02凝胶含$i02高,并使砂芯和砂型建立强度。 C02是一种脱水能力相当强的气体,从砂粒周围流过,C02与粘结剂接触面积大,使钠水玻璃部分失水,因此,C02硬化既有钠水玻璃的物理脱水作用,也有化学反应,两种机理难以截然分开,通常其粘结是两种作用的结果。(哪一种作用占主导地位?) 采用C02法硬化,有人认为仅发挥了钠水玻璃粘结性能的10%,:因此不得不把砂中钠水玻璃加入量提高到6%-7%(质量分数)。图所示为C02硬化后包裹在砂粒表面的钠水玻璃膜的结构模型,膜由两层组成,表层Ι的主要成分是硅酸胶体以及Na2C03和NaHC03结晶(粉化即白霜),里层Ⅱ的主要成分是尚未反应的硅酸钠胶体。 有机酯液态硬化剂 酯促使钠水玻璃砂硬化建立强度分两阶段,酯使钠水玻璃胶凝化,产生强度;最终强度来自硅酸钠脱水。用酯硬化时,酯在钠水玻璃中进行水解生成有机酸和醇,有机酸提供氢离子,其反应通式是 RCOOR’+H2O-------RCOOH+R’OH RCOO-与钠水玻璃电离的钠离子Na+发生皂化反应,生成脂肪酸钠;H+与钠水玻璃的OH-结合,均有利于酯的进一步水解和使钠水玻璃析出硅酸溶胶,并促使朝着生成大的凝聚的硅酸分子方向移动,当它在三维空间任意生长时,就形成凝胶,这就导致钠水玻璃硬化。 (3)不同硬化方法所得钠水玻璃砂的强度是不同的。 其原因为: ①所得到的粘结剂膜组织的密度和有序性排列不同,因而影响强度的大小,其顺序为加热硬化、酯硬化、铬铁渣硬化、CO2硬化,相应的粘结膜的内聚强度为41MPa、29.8MPa、20.5MPa、14.9MPa; ②所得钠水玻璃的凝胶胶粒大小明显不同,C02硬化的胶粒直径为0.2—0.48µm,酯硬化的为0.07-0.18µm,真空硬化的为0.06-0.16µm,加热硬化的只有0.035-0.04µm,因而强度会明显不同。 此外,还可使用硅溶胶、植物油、树脂等作为粘结剂形成不同类型的砂型。
2025-07-01
-
砂型铸造工艺全解,教你兼顾铸件质量和生产成本及效率
工艺在铸件生产过程中占有十分重要的地位,它直接影响铸件的质量水平、生产成本、生产效率及环境污染程度。砂型铸造方法可分为物理硬化造型方法和化学造型方法两大类。物理硬化造型方法主要有粘土砂型、实型铸造、V法造型法、冷冻造型法等。其中粘土砂型又分为湿型、干型和表干型。实型造型和V法造型法属于无粘结剂方法(干砂),采用负压成型。冷冻造型法则以水为粘结剂。化学造型方法主要有:水玻璃砂型、树脂砂型等。它们又都可分为加热硬化、自硬、吹气硬化等三种。水玻璃为无机粘结剂,树脂为有机粘结剂,选择砂型造型工艺时,应遵循以下几项原则: 1.应能保证铸件质量要求 表1~3列出了砂型铸造各类合金铸件的质量公差、尺寸公差和表面粗糙度范围。 表1砂型铸造的铸件质量公差等级/MT 表2砂型铸造的铸件尺寸公差等级/CT 表3 砂型铸造各类合金铸件的表面粗糙度范围 注:“+”为可以达到的粗糙度,“*”为采取特殊措施后方能达到的粗糙度。 目前广泛应用的造型工艺主要有粘土湿型砂工艺、CO2吹气硬化水玻璃砂工艺、有机酯自硬水玻璃砂工艺、酸自硬呋喃树脂砂工艺等。近年来,酯硬化酚醛树脂自硬砂造型工艺也得到了一定程度的推广应用。这些造型工艺的特点、对铸件质量的影响和适用范围分别简介如下: (1)粘土湿型砂工艺 粘土湿型砂工艺的优点是: ①所用原材料价格便宜,来源丰富。 ②造型方便,砂型不必烘干,铸型生产周期短,效率高,易于实现大批量生产。 ③回用砂中未脱水失效的膨润土与水混合后即能恢复强度,旧砂回用性好,回用设备投资少。 ④经过长期应用,已经发展了一系列造型设备。 ⑤一般造型所生产铸件的尺寸精度不亚于化学自硬砂,射压造型、气冲造型和静压造型等高压造型方法所生产的铸件尺寸精度可与熔模铸造相媲美。 粘土湿型砂不同机器造型方法所生产的铸件尺寸精度和表面粗糙度见表4。 表4 粘土湿型砂不同造型方法的铸件尺寸精度和表面粗糙度 由于上述优点,粘土湿型砂工艺在小型铸件特别是汽车、发动机、纺织机等各种大规模生产的铸铁件上得到了广泛的应用,其所占比例居各种铸型之首。但是,粘土湿砂型在浇注时,砂型表面产生水分的汽化和迁移,使铸件容易产生气孔、夹砂、砂眼、胀砂、粘砂等缺陷。 (2)CO2吹气硬化水玻璃砂工艺 普通CO2吹气硬化水玻璃砂工艺是水玻璃粘结剂领域里应用最早的一种快速成型工艺。 其优点主要有: ①设备简单,操作方便,使用灵活。 ②粘结剂无毒无味,成本低廉。 ③砂型高温退让性好,铸件的收缩应力小。 ④粘结剂系统不含S、P、N,铸件表面无增硫现象。 CO2吹气硬化水玻璃砂工艺在国内外大多数的铸钢件生产中得到了广泛的应用,主要用于中、小型铸钢件生产。但是,CO2吹气硬化水玻璃砂工艺的缺点也非常明显: ①砂型(芯)强度低,水玻璃加入量高。 ②含水量大,易吸潮,冬季硬透性差。 ③砂型(芯)溃散性差,旧砂再生困难,大量旧砂被废弃。 过去由于溃散性和旧砂回用问题未很好解决,在一定程度上影响了水玻璃砂的扩大应用。近年来,人们对于水玻璃的基本组成和“老化”现象实质的认识深化和新型硬化工艺(如真空置换CO2气体硬化水玻璃砂工艺)等两方面均取得了突破性进展,在型芯砂保持足够的工艺强度的条件下,采用低含量泥量的优质天然硅砂,水玻璃加入量可降至4.0%,从而使水玻璃砂长期存在的溃散性差、旧砂不能回用问题地,得到了较好的解决。水玻璃旧砂再生成套设备也趋于成熟,水玻璃砂出现了良好的发展势头。 (3)有机酯自硬水玻璃砂工艺 有机酯自硬水玻璃砂在铸钢方面应用十分广泛,在铸铁方面也有一定的应用。这种硬化工艺的主要优点是: ①型砂具有很高的强度,水玻璃加入量可低至2.5-3.5%。 ②砂型(芯)溃散性较好,旧砂干法再生回用率≥80%。 ③砂型热塑性好,发气量低,可克服呋喃树脂砂生产铸钢件时易出现的裂纹、气孔等缺陷,铸件质量和尺寸精度可与树脂砂相媲美。 ④在所有自硬砂工艺中生产成本最低,劳动条件好。 该硬化工艺尚存在以下不足:型芯砂硬化速度慢,脆性大,流动性较差。 (4) 酸自硬呋喃树脂砂工艺 酸自硬呋喃树脂砂、有机酯自硬水玻璃砂分别是有机粘结剂化学自硬砂和无机粘结剂化学自硬砂的典型代表,化学自硬砂工艺的共同特点是: ①砂型硬化后起模,因此型砂不需要高的湿强度,型砂流动性好,砂型强度高,变形小,工装简化,造型简单,砂型不必烘干,铸件尺寸精度显著提高,可以达到CT8~10级,铸件缺陷也较少。 ②化学硬化砂一般都采用液态的能够自硬的粘结剂。因此,它对原砂的质量要求较高,以尽量减少粘结剂的加入量。 ③由于粘结剂的硬化属不可逆的化学反应,不能像粘土砂那样简单地加水重新回用,大批量使用时必须要有比较完善的旧砂再生系统。 ④模型结构和表面质量等方面的要求较高,以便脱模。 自硬砂工艺主要适用于大型铸件小批或批量生产,与粘土湿型砂工艺不存在竞争或替代关系。 酸自硬呋喃树脂砂工艺是在铸铁方面应用比较广泛的一种自硬砂工艺,其突出优点是砂型(芯)溃散性好,旧砂再生回用率高。 铸造生产中所使用的呋喃树脂都需要经过脲醛改性,并根据改性后树脂的含氮量分别应用于有色合金、灰铸铁、球墨铸铁和铸钢等方面。 酸自硬呋喃树脂工艺的缺点是: ①树脂粘结剂和固化剂高温分解后所产生的N、S、P等气体会使球铁铸件和铸钢件表面严重渗硫,产生气孔和裂纹等缺陷。 ②砂型高温热膨胀率大,产生的热应力大,高温退让性差,铸件的收缩应力大,铸件容易出现裂纹和毛刺。 ③树脂粘结剂价格较贵,而且分解后所产生的呋喃环对人体健康十分有害。 (5)酯硬化酚醛树脂自硬砂 酯硬化酚醛树脂自硬砂工艺是英国波顿公司开发的,称为a-set工艺,于1981年获得专利,1984年已广泛地应用于欧洲,最先用于铸钢生产,现已扩大到铸铁和非铁合金铸件。 此种酚醛树脂的碱性较强,PH值为11-13.5。树脂中含有机溶剂,闪点低,易燃,而且能溶于水,保存期短,在20℃下可存放6个月,30℃下为2-3个月,40℃下仅为1-2个月。 此种自硬砂的硬化剂是有机酯,可根据硬化速度的要求选用。硬化剂用量大约是树脂的20~30%(质量分数),而酚醛树脂加入量为原砂的1.5~2.5%。其混砂工艺与酸自硬呋喃树脂相同。砂温通常控制在20~30%,型(芯)砂可使用时间为5~30min,脱模时间为15~60min。 酯硬化酚醛树脂自硬砂的主要特点有: ①在硬化剂作用下只发生部分反应,铸型或型芯硬化后有一定的热塑性,浇注金属后还有一短暂的、因受热而完全硬化的过程。这也是与酸自硬呋喃树脂砂的不同之处。因此,用此工艺制成的铸型(芯),硬化后强度并不很高,抗压强度只有2~4MPa,但是,由于浇注初期还将进一步硬化,铸型的尺寸稳定性和热稳定性都好,制得的铸件尺寸精度高,表面质量好。 ②由于不含N、P、S,所以特别适合于铸钢件、球墨铸铁件生产。 ③不会产生脉纹毛刺缺陷。其它自硬树脂铸型,在浇注和凝固过程中,在铸型/金属界面会出现裂纹。而酯硬化酚醛树脂自硬砂在浇注和凝固过程中,表层出现可避免开裂的短暂的热塑性阶段,因而可得到无脉毛刺纹缺陷的光洁铸件。 ④碱性酚醛树脂对原砂的适应性广,不仅适用于硅砂,也适用于需酸值高的镁砂、镁橄榄石砂、铬铁矿砂等特种砂。 2.应与生产批量相适应 大批量生产时,应优先考虑机械化、自动化的粘土湿型砂造型生产线和树脂砂制芯生产线。对于粘土湿型砂铸造小型铸件,可以采用水平分型或垂直分型的无箱高压造型生产线,造型生产效率高,占地面积也小;对于中件(大于10kg),可选用各种有箱高压造型生产线,气冲造型线,以适应快速、高精度造型生产线的要求。老式的震击式或震压式造型机生产线生产率低,工人劳动强度大,噪声大,不适应大量生产的要求,应逐步淘汰。 中等批量生产时,可以考虑应用树脂自硬砂、CO2吹气硬化水玻璃砂、真空置换吹气硬化水玻璃砂造型和造芯。 单件小批量生产时,手工造型仍是重要的方法。手工造型能适应各种复杂的要求,比较灵活,不要求很多工艺装备,可以应用树脂自硬砂型、CO2吹气硬化水玻璃砂型、真空置换吹气硬化水玻璃砂型、有机酯水玻璃自硬砂型、粘土干型及水泥砂型等。对于单件生产的重型铸件,采用地坑造型法成本低,投产快。 批量生产或长期生产的定型产品采用多箱造型、劈箱造型法比较适宜,虽然模具、砂箱等初期投资高,但可从节约造型工时,提高产品质量方面得到补偿。 3.应适应企业自身条件 不同企业的生产条件(包括设备、场地、员工素质等)、生产习惯、所积累的经验各不一样,应该根据这些条件考虑适合采用什么造型方法。适用的就是最好的。当前各种工艺技术竞相发展,每项技术都有其优点,也都有一定的局限性和适用范围。先进的、技术含量高的工艺并不一定是适用的。根据企业自身条件选用技术上适用、经济上合理的工艺,注重技术与经济的结合,才能作出切合实际的选择。 例如:生产大型机床床身等铸件时,可采用组芯造型法,不制作模样和砂箱,在地坑中组芯;而另外的工厂则采用砂箱造型法,制作模样。 4.要兼顾铸件的质量和成本 各种铸造工艺所获得的铸件质量不同,初期投资和生产效率也不一致,最终的经济效益也有差异。因此,要做到多、快、好、省,就应当兼顾到各个方面。应对所选用的铸造方法进行成本估算,以保证经济效率和铸件质量的双重要求。 几种常用的化学硬化砂的成分分析列于表5,它们的工艺性能对比情况列于表6,从质量和成本的角度综合考虑,应该更加注意水玻璃自硬砂的发展。 表5几种自硬砂在旧砂再生回用时的型(芯)砂成本分析(配制1t型砂所需费用) 注:①再生砂的成本为新砂的20%;每吨砂耗用CO2气体12Kg。 表6几种化学硬化砂的工艺性能对比 5.要重视造型工艺的环境保护特性 铸造生产历来以环境污染严重而著称,其污染形式主要是由钢铁熔化和造型材料带来的空气污染和废渣污染,其中由造型材料带来的空气污染和废渣污染最为严重。 根据统计生产1t铸件需耗约1t新砂,同时废弃约1t旧砂。目前我国年生产铸件约2800万吨,年排放的旧砂量也约2800万吨,这不仅占去了大量的自然资源,而且造成了严重的环境污染。要消减旧砂排放量,必须尽量采用旧砂回用率高的铸造工艺,粘土湿型砂、树脂砂工艺等。 但是,粘土湿型砂存在较大的粉尘污染和煤粉黑色污染,煤粉在浇注过程中的燃烧和分解产生的有害气体还导致严重的空气污染;而树脂砂生产现场的空气中游离着许多有机废气(SO2、甲醛、苯、甲基等),浇注后会产生大量有害气体,对人类的健康非常有害。水玻璃砂由硅砂、无机水玻璃粘结剂等组成,采用CO2气体或有机酯(如乙二醇二乙酸脂等)作固化剂,生产环境友好,不产生有害气体。与粘土砂和树脂砂相比,水玻璃砂工艺是最可能实现绿色清洁铸造生产的造型制芯工艺。 6. 结 论 铸造的产品多种多样,造型的工艺也是千变万化。我们在选择自己产品的生产工艺时必须要有科学的态度,要从实际出发,要根据铸件的材质、结构特点和质量要求进行综合考虑。 覆膜砂铸造砂眼_气孔_粘砂_的等缺陷原因及解决方法 传统的铸造涂料只是在铸件和铸型中间起到阻挡隔离作用,达到防粘砂目的,但普通铸造涂料高温下由于附着力差、强度低、耐火差、发气量大,容易造成铸件产生粘砂、砂眼、气孔、碳渣等缺陷。铸件粘砂是因为涂料没有有效起到阻挡隔离作用,或涂料与高温金属液体发生化学反映。 1.涂料附着力差:填砂震动时造成涂料剥落,引起铸件粘砂, 2.涂料膨胀系数大:与高温金属液体接触时涂料受热体积膨胀脱离铸型导致铸件粘砂。 3.高温液体金属被氧化与涂料和铸型发生化学反应生成金属氧化物,对涂料和型砂都有极强的粘结性,能够将型砂牢固粘附在铸件表面上形成一系列的低熔点化合物〔在铸件厚壁及转角处等,低熔点物更多,粘砂层更后),造成铸件粘砂,有时虽未产生粘砂,但在铸件表面粘附上一层难以清除的涂料,及产生粘灰。 铸件砂眼: 1.铸型内有掉入的砂子。 2,涂料强度低,耐火差,经不住高温金属液体的冲刷,型砂被卷入铸件。铸件气孔产生的原因很多,最常见的就是因为铸型中存在较多发气量大的物质,发气速度快,涂料或被砂透气性差,气体未及时排除所致。研制的新型铸造涂料是在传统铸造涂料基础上加以改进,调整,高温下不开裂,不脱落,强度高,并且能有效防止高温液体金属氧化,与铸型和高温液体金属接触过程中不起化学反应。同时能预防氮、硫、碳等气体的产生。从而彻底解决:铸件粘砂,铸件砂眼,铸件粗糙,铸件气孔,铸件夹杂〔渣〕,球磨铁变异,铸钢渗硫裂纹,增碳缺陷等。 壳型铸造方法生产的铸件尺寸精度高,表面粗糙度低,可节省大量的金属切削消耗和机加工工时,并且由于型砂用量和造型方法的改变,为铸造生产的机械化和自动化创造了条件,因而特别适用于生产批量较大、精度要求较高的铸件。 用热芯盒覆膜砂工艺做壳形铸造不锈钢铸件跟铸铁的工艺区别在于覆膜砂工艺做壳形铸造不锈钢铸件跟铸铁的工艺区别是原砂SiO2含量不同,铸铁为SiO2含量90%,铸钢为大于95%。壳形铸造铸件精度低于腊模精铸。
2025-07-01
有想补充的信息?点我投稿

- 联系我们
- 企业入驻
