-
吹塑成型Hollow Blow
吹塑成型Hollow Blow 吹塑成型——是借气体压力使闭合在模具中的热型坯吹胀成为中空制品,或管型坯无模吹胀成管膜的一种方法。该方法主要用于各种包装容器和管式膜的制造。凡是熔体指数为0.04 ~ 1.12的都是比较优良的中空吹塑材料,如聚乙烯、聚氯乙烯、聚丙烯、聚苯乙烯、热塑性聚酯、聚碳酸酯、聚酰胺、醋酸纤维素和聚缩醛树脂等,其中以聚乙烯应用得最多。 1、注射吹塑成型——用注射成型法先将塑料制成有底型坯,接着再将型坯移到吹塑模中吹制成中空制品。 2、挤出吹塑成型——用挤出法先将塑料制成有底型坯,接着再将型坯移到吹塑模中吹制成中空制品。 注射吹塑成型和挤出吹塑成型的不同之处是制造型坯的方法不同,吹塑过程基本上是相同的。 吹塑设备除注射机和挤出机外,主要是吹塑用的模具。吹塑模具通常由两瓣合成,其中设有冷却剂通道,分型面上小孔可插入充压气吹管。 3、拉伸吹塑成型——拉伸吹塑成型是双轴定向拉伸的一种吹塑成型,其方法是先将型坯进行纵向拉伸,然后用压缩空气进行吹胀达到横向拉伸。拉伸吹塑成型可使制品的透明性、冲击强度、表面硬度和刚性有很大的提高,适用于聚丙烯、聚对苯二甲酸乙二醇酯 (PETP)的吹塑成型。 拉伸吹塑成型包括:注射型坯定向拉伸吹塑,挤出型坯定向拉伸吹塑,多层定向拉伸吹塑,压缩成型定向拉伸吹塑等。 4、吹塑薄膜法——成型热塑性薄膜的一种方法。用挤出法先将塑料挤成管,而后借助向管内吹入的空气使其连续膨胀到一定尺寸的管式膜,冷却后折叠 卷绕成双层平膜。塑料薄膜可用许多方法制造,如吹塑、挤出、流延、压延、浇铸等,但以吹塑法应用最广泛。该方法适宜于聚乙烯、聚氯乙烯、聚酰胺等薄膜的制造。
2025-07-01
-
冲压件的基本成型工艺及表面处理
冲压件的基本成型工艺 冲压件成形原理:冲压是靠压力机和模具对板材、带材、管材和型材等,施加外力,使之产生塑性变形或分离,从而获得所需形状和尺寸的工件(冲压件)的成形加工方法。 工艺分类:冲压主要是按工艺分类,可分为分离工序和成形工序两大类。 分离工序(冲裁工序):其目的是使冲压件沿一定轮廓线从板料上分离,同时保证分离断面的质量要求。分离工序:冲裁(落料、冲孔)、剪切、切口、切边、剖切。冲裁时板料的变形过程 变形过程: 模具间隙正常时,金属材料的冲裁过程可分三个阶段: 1)弹性变形阶段 板料产生弹性压缩,弯曲和拉伸等变形。材料在受到外力作用时产生变形或者尺寸 的变化,而 且能够恢复的变形叫做弹性变形。 2)塑性变形阶段 板料的应力达到屈服极限,板料开始产生塑性剪切变形。是指材料在外力作用下产而在外力去除后不能恢复的那部分变形。 3)断裂分离阶段 已成形的裂纹沿最大应变速度方向向材料内延伸,呈楔形状发展冲裁后板料断面分为四个部分成形工序:是使板料在不破坏的条件下发生塑性变形,制成所需形状和尺寸的工件。 成形工序:弯曲、卷圆、扭曲、拉深、变薄拉深、翻边(孔的翻边、外缘翻边)、缩口、扩口、起伏、卷边、涨形、旋压、整形、校平、压印、挤压(正挤压、反挤压、复合挤压)。冲压件设计注意事项 冲裁冲压件的冲压工艺性 1).冲裁件的形状和角度:冲裁件的形状设计应尽可能简单、对称,使排样时废料最少。冲裁件拐角应避免锐角,宜有适当的圆角2).冲孔最小孔径 (冲孔时孔径不宜太小)最小尺寸如下表冲裁件的结构尺寸(如孔径、孔距等)必须考虑材料的厚度。 3). 最小孔间距 和孔边距 冲裁件的孔与孔之间、孔与边缘之间的距离不应过小。4). 凸出悬臂和凹槽的最小宽度弯曲件的冲压工艺性 1).材料弯曲时,弯曲圆角当超过材料的极限强度时,就会产生裂缝和折断,应避免过小的弯曲圆角半径 2)R角的设定最好不要大于其自身1.5倍材料厚度。因为R角过大弯曲过后其回弹也很大。3).弯曲件的弯曲高度不要太长,同时H也不可以过小,特别是材料t>2mm的时候h过小(切记),会使弯曲困难,很难得到形状准确的零件。 弯曲件弯角成90°时,为了便于成形应使弯曲件直边高度h>2t,当h=1.3t-2t时,应使R≈0或采用压凹槽等弯曲方法,见下图。4). 弯曲件的弯曲线尽量不要设计在宽度突变的地方(如下图),以避免撕裂。 如果非要设计在宽度突变的地方,可以在宽度突变处预先冲好工艺孔或工艺槽 。5).对于有孔的弯曲件,如果孔位于弯曲的附近,弯曲的时候会使孔变形。 解决措施:使这些孔分布在变形区域之外。 如下图对于弯曲件,从孔边到弯曲半径R中心的距离取为:当t<2mm的时,l≥t;当t≥2mm的时,l≥2t。6).当弯曲件由宽、窄两部分组成时,过渡处距离L≥R,见下图。7).对称件的弯曲,左右弯曲半径应该一致,以便保证弯曲过程中的受力平衡,以防止在弯曲过程中产生滑动,见下图。8).在设计弯曲件的时候,由于弯曲的形状和整体冲压件的形状不规则,所以,就要在冲压件上设计基准孔或基准边以及标注公差的一些基准。 如:面、边、孔等,但是尽量不要把基准设定在很难测量的地方如:空间的圆心、很难判定的元素等,见下图。9).在设计弯曲件的时候,要考虑折弯前材料展开长度(方向)是否有足够的空间(两片之间距离>t)拉伸件的冲压工艺性 1)拉深概念 利用模具将平板毛坯冲压成各种开口的空心零件,或将已制成的开口空心件压制成其他形状和尺寸空心件的一种冲压加工方法。拉深工艺分类 1)按壁厚变化情况分: ① 一般拉深(工件壁厚不变) ② 变薄拉深(工件壁厚变薄) 2)按使用的毛坯的形状分: ① 第一次拉深(使用平板毛坯) ② 以后的各次拉深(以开口空心件为毛坯)3)拉深变形过程:4)拉深过程中毛坯各部分变化 : ① 平面凸缘部分(主要变形区) ② 凹模圆角部分(过渡区) ③筒壁部分(变形区) ④ 凸模圆角部分(过渡区) ⑤ 筒底部分(小变形区)缩孔、翻边、膨胀的成形介绍冲压件结构设计要点 1、避免直角,圆弧过渡 2、孔与孔,孔与边,孔与弯曲处之间有足够距离 3、弯曲半径不能过小,折弯高度适宜 4、薄板可以通过加强筋方式提高刚度和强度 5、注意板料的纤维方向 冲压件的表面处理 冲压产品的表面处理包括电镀(锌﹑镉﹑铜﹑铬﹑锡﹑镍﹑金﹑银等)、静电涂喷、喷漆、电泳、丝网印刷等处理方式。应用比较广泛的有喷塑、喷漆、发黑、电泳、镀锌、镀镍等电镀 镀层金属或其它不溶性材料做阳极,待镀的工件做阴极,镀层金属的阳离子在待镀工件表面被还原形成镀层。为排除其它阳离子的干扰,且使镀层均匀、牢固,需用含镀层金属阳离子的溶液做电镀液,以保持镀层金属阳离子的浓度不变。电镀的目的是在基材上镀上金属镀层,改变基材表面性质或尺寸。电镀能增强金属的抗腐蚀性(镀层金属多采用耐腐蚀的金属)、增加硬度、防止磨耗、提高导电性、润滑性、耐热性和表面美观。 电泳 电泳是电泳涂料在阴阳两极。施加于电压作用,带电荷之涂料离子移到阴极,并与阴极表面所产生之碱性作用形成不溶解物,沉积于工作表面。 电泳表面处理工艺的特点: 电泳漆膜具有丰满、均匀、平整、光滑的优点,电泳漆膜的硬度、附着力、耐腐、冲击性能、渗透性能明显优于其它涂装工艺发黑 钢制件的表面发黑处理,也有被称之为发蓝的,其原理是将钢铁制品表面迅速氧化,使之形成致密的氧化膜保护层,提高钢件的防锈能力。发黑处理现在常用的方法有传统的碱性加温发黑和出现较晚的常温发黑两种镀锌、锡 镀锌、锡是指在金属、合金或者其它材料的表面镀一层锌以起美观、防锈等作用的表面处理技术。现在主要采用的方法是热镀锌。 磷化 磷化是一种化学与电化学反应形成磷酸盐化学转化膜的过程,所形成的磷酸盐转化膜称之为磷化膜。磷化的目的主要是:给基体金属提供保护,在一定程度上防止金属被腐蚀;用于涂漆前打底,提供漆膜层的附着力与防腐蚀能力;在金属冷加工工艺中起减摩润滑使用喷涂 利用压力或静电力将油漆或粉末附着在工件表面,使工件有防腐蚀和外观装饰作用。烤漆 在基材上打上底漆、面漆,每上一遍漆,都送人无尘恒温烤房,烘烤。 钝化 其钝化的机理可用薄膜理论来解释,即认为钝化是由于金属与氧化性质作用,作用时在金属表面生产一种非常薄的、致密的、覆盖性能良好的、牢固地吸附在金属表面上的钝化膜。这层膜成独立相存在,通常是氧化金属的化合物、它起着把金属与腐蚀介质完全隔开的作用,防止金属与腐蚀介质接触,从而使金属基本停止溶解形成钝化态达到防腐蚀的作用
2025-07-01
-
铸造:金属热加工工艺
铸造:金属热加工工艺 铸造是人类掌握比较早的一种金属热加工工艺,已有约6000年的历史。中国约在公元前1700~前1000年之间已进入青铜铸件的全盛期,工艺上已达到相当高的水平。铸造是将液体金属浇铸到与零件形状相适应的铸造空腔中,待其冷却凝固后,以获得零件或毛坯的方法。 被铸物质多为原为固态但加热至液态的金属(例:铜、铁、铝、锡、铅等),而铸模的材料可以是砂、金属甚至陶瓷。因应不同要求,使用的方法也会有所不同。 工艺简介 铸造是指将固态金属熔化为液态倒入特定形状的铸型,待其凝固成形的加工方式。被铸金属有:铜、铁、铝、锡、铅等,普通铸型的材料是原砂、黏土、水玻璃、树脂及其他辅助材料。特种铸造的铸型包括:熔模铸造、消失模铸造、金属型铸造、陶瓷型铸造等。(原砂包括:石英砂、镁砂、锆砂、铬铁矿砂、镁橄榄石砂、兰晶石砂、石墨砂、铁砂等) 早期 殷墟司母戊鼎,世界上最大的青铜器,反映了中国青铜铸造超高工艺 中国商朝的重875公斤的司母戊方鼎,战国时期的曾侯乙尊盘,西汉的透光镜,都是古代铸造的代表产品。 早期的铸件大多是农业生产、宗教、生活等方面的工具或用具,艺术色彩浓厚。那时的铸造工艺是与制陶工艺并行发展的,受陶器的影响很大。 发展 中国在公元前513年,铸出了世界上最早见于文字记载的铸铁件-晋国铸型鼎,重约270公斤。欧洲在公元八世纪前后也开始生产铸铁件。铸铁件的出现,扩大了铸件的应用范围。例如在15~17世纪,德、法等国先后敷设了不少向居民供饮用水的铸铁管道。18世纪的工业革命以后,蒸汽机、纺织机和铁路等工业兴起,铸件进入为大工业服务的新时期,铸造技术开始有了大的发展。 近代 进入20世纪,铸造的发展速度很快,其重要因素之一是产品技术的进步 ,要求铸件各种机械物理性能更好,同时仍具有良好的机械加工性能;另一个原因是机械工业本身和其他工业如化工、仪表等的发展,给铸造业创造了有利的物质条件。如检测手段的发展,保证了铸件质量的提高和稳定,并给铸造理论的发展提供了条件;电子显微镜等的发明,帮助人们深入到金属的微观世界,探查金属结晶的奥秘,研究金属凝固的理论,指导铸造生产。 铸造定义 (GB/T5611-1998) 铸造-熔炼金属,制造铸型,并将熔融金属浇入铸型,凝固后获得具有一定形状、尺寸和性能金属零件毛坯的成型方法 铸造是将金属熔炼成符合一定要求的液体并浇进铸型里,经冷却凝固、清整处理后得到有预定形状、尺寸和性能的铸件的工艺过程。铸造毛坯因近乎成形,而达到免机械加工或少量加工的目的降低了成本并在一定程度上减少了制作时间.铸造是现代装置制造工业的基础工艺之一。 铸造分类 主要有砂型铸造和特种铸造2大类。 1 普通砂型铸造,利用砂作为铸模材料,又称砂铸,翻砂,包括湿砂型、干砂型和化学硬化砂型3类,但并非所有砂均可用以铸造。好处是成本较低,因为铸模所使用的沙可重复使用;缺点是铸模制作耗时,铸模本身不能被重复使用,须破坏后才能取得成品。 1.1 砂型(芯)铸造方法:湿型砂型、树脂自硬砂型、水玻璃砂型、干型和表干型、实型铸造、负压造型。 1.2 砂芯制造方法:是根据砂芯尺寸、形状、生产批量及具体生产条件进行选择的。在生产中,从总体上可分为手工制芯和机器制芯。 2特种铸造,按造型材料又可分为以天然矿产砂石为主要造型材料的特种铸造(如熔模铸造、泥型铸造、壳型铸造、负压铸造、实型铸造、陶瓷型铸造等)和以金属为主要铸型材料的特种铸造(如金属型铸造、压力铸造、连续铸造、低压铸造、离心铸造等)两类。 2.1 金属模铸造法 利用熔点较原料高的金属制作铸模。其中细分为重力铸造法、低压铸造法和高压铸造法。 受制于铸模的熔点,可被铸造的金属也有所限制。 2.2 脱蜡铸造法 这方法可以为外膜铸造法和固体铸造法。 先以蜡复制所需要铸造的物件,然后浸入含陶瓷(或硅溶胶)的池中并待乾,使以蜡制的复制品覆上一层陶瓷外膜,一直重复步骤直到外膜足以支持铸造过程(约1/4寸到1/8寸),然后熔解模中的蜡,并抽离铸模。其后铸模需要多次加以高温,增强硬度后方可用以铸造。 此方法具有良好的准确性,更可用作高熔点金属(如钛)的铸造。但由于陶瓷价格颇高,而且制作需要多次加热和复杂,故成本颇为昂贵。 成型工艺 1.重力浇铸:砂铸,硬模铸造。依靠金属自身重力将熔融金属液浇入型腔。 2.压力铸造:低压浇铸,高压铸造。依靠额外增加的压力将熔融金属液瞬间压入铸造型腔。 铸造工艺通常包括 ①铸型(使液态金属成为固态铸件的容器)准备,铸型按所用材料可分为砂型、金属型、陶瓷型、泥型、石墨型等,按使用次数可分为一次性型、半永久型和永久型,铸型准备的优劣是影响铸件质量的主要因素; ②铸造金属的熔化与浇注,铸造金属(铸造合金)主要有各类铸铁、铸钢和铸造有色金属及合金; ③铸件处理和检验,铸件处理包括清除型芯和铸件表面异物、切除浇冒口、铲磨毛刺和披缝等凸出物以及热处理、整形、防锈处理和粗加工等。 铸造工艺可分为三个基本部分,即铸造金属准备、铸型准备和铸件处理。 铸造金属是指铸造生产中用于浇注铸件的金属材料,它是以一种金属元素为主要成分,并加入其他金属或非金属元素而组成的合金,习惯上称为铸造合金,主要有铸铁、铸钢和铸造有色合金。 金属熔炼不仅仅是单纯的熔化,还包括冶炼过程,使浇进铸型的金属,在温度、化学成分和纯净度方面都符合预期要求。为此,在熔炼过程中要进行以控制质量为目的的各种检查测试,液态金属在达到各项规定指标后方能允许浇注。有时,为了达到更高要求,金属液在出炉后还要经炉外处理,如脱硫、真空脱气、炉外精炼、孕育或变质处理等。熔炼金属常用的设备有冲天炉、电弧炉、感应炉、电阻炉、反射炉等。 优点:1、可以生产形状复杂的零件,尤其是复杂内腔的毛坯; 2、适应性广,工业常用的金属材料均可铸造,几克到几百吨; 3、原材料来源广,价格低廉,如废钢、废件、切屑等; 4、铸件的形状尺寸与零件非常接近,减少了切削量,属于无切削加工; 5、应用广泛,农业机械中40%~70%、机床中70%~80%的重量都是铸件。 缺点:1、机械性能不如锻件,如组织粗大,缺陷多等; 2、砂型铸造中,单件、小批量生产,工人劳动强度大; 3、铸件质量不稳定,工序多,影响因素复杂,易产生许多缺陷。 铸造的缺陷对铸件质量有着重要的影响,因此,为选择铸造合金和铸造方法打好基础,应从铸件的质量入手,并结合铸件主要缺陷的形成与防治。 铸造热 铸造热是由于吸入在熔炼铜时产生的高分散度的氧化锌烟雾所引起的一种急性发热反应。有人报道铅、锡、锑、镍等的金属氧化物烟雾亦可引起此症。防止金属烟雾的逸散,是预防铸造热的根本办法。在熔炼、浇铸等操作时要加强密闭化,安装局部排风除尘设备,回收氧化锌。加强全面通风、戴防烟雾口罩可作为辅助性措施。 工艺流程 随着科技的进步与铸造业的蓬勃发展,不同的铸造方法有不同的铸型准备内容。以应用最广泛的砂型铸造为例,铸型准备包括造型材料准备和造型、造芯两大项工作。砂型铸造中用来造型、造芯的各种原材料,如铸造原砂、型砂粘结剂和其他辅料,以及由它们配制成的型砂、芯砂、涂料等统称为造型材料,造型材料准备的任务是按照铸件的要求、金属的性质,选择合适的原砂、粘结剂和辅料,然后按一定的比例把它们混合成具有一定性能的型砂和芯砂。常用的混砂设备有碾轮式混砂机、逆流式混砂机和连续式混砂机。后者是专为混合化学自硬砂设计的,连续混合,混砂速度快。 造型、造芯是根据铸造工艺要求,在确定好造型方法,准备好造型材料的基础上进行的。铸件的精度和全部生产过程的经济效果,主要取决于这道工序。在很多现代化的铸造车间里,造型、造芯都实现了机械化或自动化。常用的砂型造型造芯设备有高、中、低压造型机、气冲造型机、无箱射压造型机、冷芯盒制芯机和热芯盒制芯机、覆膜砂制芯机等。 铸件自浇注冷却的铸型中取出后,带有有浇口、冒口、金属毛刺、披缝,砂型铸造的铸件还粘附着砂子,因此必须经过清理工序。进行这种工作的设备有磨光机、抛丸机、浇冒口切割机等。砂型铸件落砂清理是劳动条件较差的一道工序,所以在选择造型方法时 ,应尽量考虑到为落砂清理创造方便条件。有些铸件因特殊要求,还要经铸件后处理,如热处理、整形、防锈处理、粗加工等。 铸造工艺可分为三个基本部分,即铸造金属准备、铸型准备和铸件处理。铸造金属是指铸造生产中用于浇注铸件的金属材料,它是以一种金属元素为主要成分,并加入其他金属或非金属元素而组成的合金,习惯上称为铸造合金,主要有铸铁、铸钢和铸造有色合金。 铸件自浇注冷却的铸型中取出后,有浇口、冒口及金属毛刺披缝,砂型铸造的铸件还粘附着砂子,因此必须经过清理工序。进行这种工作的设备有抛丸机、浇口冒口切割机等。砂型铸件落砂清理是劳动条件较差的一道工序,所以在选择造型方法时,应尽量考虑到为落砂清理创造方便条件。有些铸件因特殊要求,还要经铸件后处理,如热处理、整形、防锈处理、粗加工等。 铸造是比较经济的毛坯成形方法,对于形状复杂的零件更能显示出它的经济性。如汽车发动机的缸体和缸盖,船舶螺旋桨以及精致的艺术品等。有些难以切削的零件,如燃汽轮机的镍基合金零件不用铸造方法无法成形。 另外,铸造的零件尺寸和重量的适应范围很宽,金属种类几乎不受限制;零件在具有一般机械性能的同时,还具有耐磨、耐腐蚀、吸震等综合性能,是其他金属成形方法如锻、轧、焊、冲等所做不到的。因此在机器制造业中用铸造方法生产的毛坯零件,在数量和吨位上迄今仍是最多的。 铸造生产经常要用的材料有各种金属、焦炭、木材、塑料、气体和液体燃料、造型材料等。所需设备有冶炼金属用的各种炉子,有混砂用的各种混砂机,有造型造芯用的各种造型机、造芯机,有清理铸件用的落砂机、抛丸机等。还有供特种铸造用的机器和设备以及许多运输和物料处理的设备。 铸造生产有与其他工艺不同的特点,主要是适应性广、需用材料和设备多、污染环境。铸造生产会产生粉尘、有害气体和噪声对环境的污染,比起其他机械制造工艺来更为严重,需要采取措施进行控制。 铸造产品发展的趋势是要求铸件有更好的综合性能,更高的精度,更少的余量和更光洁的表面。此外,节能的要求和社会对恢复自然环境的呼声也越来越高。为适应这些要求,新的铸造合金将得到开发,冶炼新工艺和新设备将相应出现。 铸造生产的机械化自动化程度在不断提高的同时,将更多地向柔性生产方面发展,以扩大对不同批量和多品种生产的适应性。节约能源和原材料的新技术将会得到优先发展,少产生或不产生污染的新工艺新设备将首先受到重视。质量控制技术在各道工序的检测和无损探伤、应力测定方面,将有新的发展。 行业特点 铸造是比较经济的毛坯成形方法,对于形状复杂的零件更能显示出它的经济性。如汽车发动机的缸体和缸盖,船舶螺旋桨以及精致的艺术品等。有些难以切削的零件 ,如燃汽轮机的镍基合金零件不用铸造方法无法成形。 对于铸造工程师以及机械结构设计工程师而言,热处理是一项非常有意义,而具甚高价值用以改进材料品质的方法,借热处理可以改变或影响铸铁的组织及性质,同时可以获得更高的强度、硬度,而改善其磨耗抵抗能力等等。 由于目的不同,热处理的种类非常多,基本主要可分成两大类,第一类是组织构造不会经由热处理而发生变化或者也不应该发生改变的,第二则是基本的组织结构发生变化者。第一热处理程序,主要用于消除内应力,而此内应力系在铸造过程中由于冷却状况及条件不同而引起。组织、强度及其他机械性质等,不因热处理而发生明显变化。 对于第二类热处理而言,基地组织发生了明显的改变,可大致分为五类: (1)软化退火:其目的主要在于分解碳化物,将其硬度降低,而提高加工性能,对于球墨铸铁而言,其目的在于获得更多的铁素体组织。 (2)正火处理:主要目的是获得珠光体和索氏体组织提高铸件的机械性能。 (3)淬火:主要为了获得更高的硬度或磨耗强度,同时的到甚高的表面耐磨特性。 (4)表面硬化处理:主要为获得表面硬化层,同时得到甚高的表面耐磨特性。 (5)析出硬化处理:主要是为获得高强度而伸长率并不因而发生激烈的改变。 (6)表面铸造的缺陷处理:可有时我们的缺陷没有很多,就不必要投入较大的成本,我们用一些修补剂就可以修补好的,方便简单,例如铁质材料的,我们可以用(劲素成)JS902修补一下就可以了,用不完可以放到以后再用,这样可以为我们的厂家节省成本,让我们的铸造厂家把更多的资金投入到提高产品本身质量上,让使用者创造更多的财富。 趋势 行业趋势 铸造业的发展,铸造是现代机械制造工业的基础工艺之一,因此铸造业的发展标志着一个国家的生产实力。据2008年统计,我国年产铸件3350万吨,是世界铸造第一大国。随着我国铸造产业的不断发展,国内铸造产业将打造“四有”创新企业,即有创新思想、创新计划、创新的制度和体系以及创新的工作方式。而在转型升级方面,则要打造具有六大特征的新型企业:一,制造前端市场研发和后端服务变大,制造环节缩小的业务模式创新的企业。二,从卖商品转变到卖方案,提供完整解决方案的企业。三,以智能和集成为标志的数字化企业。四,三五年翻一番的速度型企业。五,先进科技、绿色制造、持续创新的企业。六,打造高端产品、精品,引导消费、品牌制胜的企业。这样的产业革新,相信我国铸造业未来将更加辉煌,美好的未来,我们拭目以待。 “八五”期间铸造机械制造受到了原机电部高度重视,投入了建国以来最大的一次专项技改贷款和攻关费用,扶持了铸造机械行业产品的开发和发展。“大型抛丸清理机的制造”,“垂直分型无箱射压造型机”,“水玻璃砂旧砂再生设备的研制”,“金属型铸造设备”等等相继被开发应用。 “九五”期间,铸造机械行业承担并树立完成了“轿车铸件毛坯精化高效造型与清理成套技术与装备”的任务,“缸体高效连续抛丸清理线的开发与研制”也取得圆满成功,1999年完成了国家攻关高水平的气冲造型线项目的成功。 “十五”期间,铸造机械行业主要经济指标的年均增长都在30%以上,高于机床工具全行业平均增长水平,特别是利润增长更快,年均利润增长高达46%,同时也保持较高的市场销售水平。另外,树脂砂造型成套设备,基本可以满足国内市场需求,改变了过去主要依赖进口的局面;已经能够生产出较高水平的铸造自动生产线,达到可部分替代进口的水平,部分的解决了轿车发动机缸体、缸盖等铸件毛坯也要进口的情况;高水平自动制芯机、自动铸件清理机、自动砂处理机、大型自动压铸机以及精密铸造设备等铸造机械,国内基本上都能生产制造。应当说“十五”期间铸造机械行业的产品水平有了很大提高,为中国铸造机械行业今后的进一步发展打下良好基础。 “十一五”期间,装备制造业在国际、国内巨大市场需求的刺激下,铸造仍将继续保持较高速度增长。由于铸造机械产品的技术水平仍然与市场需求差距较大,使行业的发展存在巨大的发展潜力和扩展空间,为铸造机械行业的快速增长带来机遇。 “十二五”期间,铸造行业力争在国际上变强而不是单一的依靠产量。同时将绿色铸造作为发展的重点,以低碳环保为铸造业的发展宗旨。而电子商务的普及也将传统的铸造业融入到了互联网的世界,国际铸业网的成功也标志着国内铸造业开始翻开了新的一页。 “十二五”末,大型核电、火电、水电、风电等高效清洁发电设备和钢铁、石化、船舶、轨道交通、机床、航空航天、汽车等产业将提供大型铸件和高端关键铸件及各类功能铸件,铸造行业将达到世界先进水平。 根据我国共同富裕的总目标,最终要缩小东西差距,我国将实施东部来带动西部发展的战略,这个战略对我国的铸造行业同样适用。我国东部地区的铸造业,因为自身的区位优势和国家政策的扶持,发展态势良好,发展水平大大高于西部地区的铸造业。 为落实我国的西部大开发战略,促进西部经济发展,我们要促进西部铸造等基础行业发展,以为西部经济的腾飞夯实基础。这就要求我国东部地区的铸造业,以其较为先进的技术优势,较为雄厚的资金优势、管理优势,带动西部铸造业发展,从而达到共同繁荣的总目标。 要解决铸造产业中恶性竞争的问题,首先要解决这些铸造厂的生存问题。推动我国的铸造产业升级,需发展高端铸造,发展高端铸造可改变我国铸造产业的结构,减少中低端铸造厂的数量,减小低端铸造产品市场的竞争压力,从而使中低端铸造市场逐步恢复到有序状态,一举解决恶性竞争的问题。 我国铸造业的专业化生产已初具规模。如今已经形成了一批颇具特色的专业化铸造生产企业。这些企业主要包括:高紧实度造型+先进制芯+双联熔炼的发动机铸件铸造企业;大批量机械化生产的刹车毂、制动盘、排气管等汽车铸件厂;树脂自硬砂为主体的机床、箱体、风电等大型铸件生产厂;V法工艺为主体的铸造厂和消失模铸造厂;金属型或金属型覆砂为主的曲轴、磨球生产厂;硅溶胶或硅酸乙脂为粘结剂的高档熔模精密铸造厂;水玻璃为粘结剂的普通钢件精铸厂;离心球铁铸管厂和离心灰铁铸管厂;有色合金砂铸压(高/低/差)铸厂等等。 发展趋势 从历史悠久的铸造技术发展到今天的现代铸造技术或液态凝固成形技术这不仅与金属与合金的结晶与凝固理论研究的深入和发展、各种凝固技术的不断的出现和提高、计算机技术的应用等有关 , 而且还与化学工业、机械制造业、制造方法和技术的发展密切相关。 (一) 凝固理论的发展 结晶与凝固是铸件形成过程的核心 , 它决定着铸件的组织和缺陷的形成 , 也决定了铸件的性能和质量 。 近 30 年来 ,借助于物理化学、金属学、非平衡态热力学与动力学、高等数学和计算数学 , 从传热、传质和固液界面几个方面进行 研究 ,使金属凝固理论有了很大的发展 , 这不仅使人们对许多条件下的凝固过程 和组织特征有了深入的认识 ,而且促使了许多凝固技术和液态凝固成形方法的提出、发展和生产应用。例如凝固理论已建立了铸件冷却速度和品粒度以及晶粒度与铸件力学性能之间的一些函数关系 , 从而为控制铸造工艺参数和铸件力学性能 提供了依据。 (二) 凝固技术的发展 控制凝固过程是开发新型材料和提高铸件质量的重要途径。 顺序凝固技术、快速凝固技术、复合材料的获得、半固态金属铸造成形技术等等就是集中的代表。 1.顺序凝固技术 所谓的顺序凝固技术 ,是使液态金属的热量沿一定向排出 , 或通过对液态金属施行某方向的快速凝固 , 从而使晶粒的生长( 凝固 )向着一定的方向进行 , 最终获得具有单方向晶粒组织或单晶组织的铸件的一种工艺方法。由于冷却及控制技术的不断进步,使热量排出的强度及方向性不断提高 , 从而使固液界面前沿液相中的温度梯度增大 , 这不仅使晶粒生长的方向性提高 ,而且组织更细长、挺直、并延长了定向区 . 顺序凝固技术已广泛应用于铸造 高温合金燃气轮机叶片的生产中 , 由于沿定向生长的组织的力学性能优异, 使叶 片工作温度大幅度提高 , 从而使航空发动机性能提高。 顺序凝固技术的最新进展 是制取单晶体铸件 , 如单晶涡轮叶片 ,它比一般顺序凝固柱状晶叶片具有更高的 工作温度 , 抗热疲劳强度、抗蠕变强度和耐腐蚀性能。采用这种高温合金单晶叶片 的航空发动机 ,有效地增加了航空发动机的推力和效率 , 使其性能大幅度提高。 2. 快速凝固技术即在比常规工艺条件下的冷却速度 ( 10-4 - 10K/S) 快得多的冷却条件 (103 - 109 K/S) 下 ,使液态合金转变为固态的工艺方法。它使合金 材料具有优异的组织和性能 , 如很细的晶粒 ( 通常 <0.1-0.01 um>甚至纳米级的晶粒 ) , 合金元偏析缺陷和高分散度的超细析出相 , 材料的高强度、高韧性等。 快速凝固技术可使液态金属脱开常规的结晶过程 (形核和生长) , 直接形成非晶结构的固体材料 , 即所谓的金属玻璃。此类非晶态合金为远程无序结构 ,具有特殊的电学性能、磁学性能、电化学性能和力学性能 ,己得到广泛的应用。如用作控制变压器铁心材料、计算机磁头及外围设备中零件的材料、纤焊材料等。快速凝固正日益受到多方的重视。 3.复合材料 制备凝固技术的另一发展是用于复合材料的制备口所谓复合材料 , 就是在非金属或金属基体中引人增强相或特殊成分 ,通过控制凝固使增强相按所希望的方式分布或排列的一种具有特殊性能的材料。由于复合材料的基体 具有较高的断裂性 , 加上增强相的存在 ,故能表现出与普通单相组织材料不同的性能 , 如高强度、良好的高温性能和抗疲劳性能 , 已发展了多种制取复合材料的工艺方法 ,如结合顺序凝固技术制备自生复合材料。此领域的应用前景将越来越广。 4. 半固态铸造半固态金属铸造成形技术经过 20 多年的研究及发展 , 已进入工业应用阶段。其原理是在液态金属的凝固过程中进行强烈的搅拌 (可以采用机械、电磁或其它方式 ) , 使普通铸造易于形成的树枝晶网络骨架被打碎而形成分散的颗粒状组织形态 , 从而制得半固态金属液 ,它具有一定的流动性 ,然后可利用常规的成形技术如压铸、挤压、模锻等成形生产坯料或铸件。半固态金属铸造成形克服了传统铸造成形易产生的缩孔、缩松、气孔及尺寸偏差等缺点, 具有成形温度低, 延长模具寿命 , 节约能源 , 改善生产条件和环境 , 提高铸件质量 ( 减少气孔和凝固收缩 ) ,减少加工余量等许多优点。半固态金属成形工艺将成为 21 世纪极具发展前途的近净形化成形技术之一。 产品分类 常用铸造金属 1.灰铸铁 2.球墨铸铁 3.可锻铸铁 4.铸钢 常用铸造有色金属 1.黄铜 2.锡青铜 3.无锡青铜 4.铝合金 冶炼 铸造有色合金的熔炼 熔炼工艺对有色合金铸件的性能和缺陷有很大影响。多数有色合金易产生气孔和夹杂,尤其是钛合金、铝合金、镁合金和某些铜合金。一般的熔炼工艺流程是: 1)根据铸件技术要求所规定的合金牌号,可查出合金的化学成分范围,从中选定化学成分; 2)根据元素的烧损率和成分要求,进行配料计算,得出各种炉料的加入量,并选择炉料。若炉料受到污染,则需要进行处理,保证所有的炉料清洁、无锈,并在投料前进行预热; 3)检查和准备化用具,涂刷涂料,并预热,防止气体、夹杂物和有害元素的污染; 4)加料。一般加料顺序为:回炉料、中间合金和金属料,低熔点易氧化的金属料,如镁,在炉料熔化之后加入; 5)为了减少合金液的吸气和氧化的污染,应尽快熔化,防止过热,根据需要,有的合金液须加覆盖剂保护; 6)炉料熔化后,进行精炼处理,以净化合金液,并进行精炼效果的检验; 7)根据需要,进行变质处理和细分组织处理以提高性能,并检验处理效果; 8)调整温度,进行浇注。有的合金在浇注前要进行搅拌,以防发生比重偏析。 耐火材料 铸造工艺中冶炼金属及浇铸成型的过程中离不开高质量的耐火材料,熔化炉及中间铁/钢水包耐火材料的质量将直接影响到金属液体的化学成分,将对铸件的综合质量造成不可挽回的不利影响. 铸造冶炼过程常用耐火材料分类: 耐火砖:硅质砖,高铝砖,刚玉砖,镁砖,镁铝砖,镁碳砖等 不定型耐火材料:捣打料,浇注料,耐火水泥,硅砂,镁砂,涂抹料以及轻质保温料等 信息化 铸造作为重要的机械工业的基础行业,在信息高速发展的现如今,提高铸造的生产加工效率、生产质量,将是广大铸造工作者的必须要面临的课题. 历来铸造的毛坯产品废品率居高不下是行业各种铸造方法的通病,怎样更好控制铸造的整个过程显得尤为重要!因此铸造过程模拟软件的出现将会逐步解决这个铸造行业的难题,下一步怎么样将模拟过程优化为更精确的测算工具,怎么样网络化,怎么样利用云计算来更好处理大量的参数数据从而使广大的铸造技术人员能更好共享这些公用数据, 中国铸造协会,中国铸造学会,中国铸造网都在为铸造行业的信息化不断投入研发力量. 四有素质 创新是一个行业发展壮大的根本源泉,是一个企业不竭的动力之基,因此铸造产业必须要大力的发展科研创新力量,铸造产业是由各个铸造企业组成的,因此要把创新工作落到实处,任务就落到了各个铸造企业的肩上,铸造企业要创新,须具备四项素质。 我国的铸造产业要打造“四有”创新企业,即有创新思想、创新计划、创新的制度和体系以及创新的工作方式。创新是一个科学体系,因此我国的铸造企业要有一个完整的创新体系,方能更好的进行创新,铸造企业在创新思想的推动下制定企业的创新计划,在创新制度和体系和保障之下实施创新计划,并以科学的工作方式来进行全局性的指导,以推动企业的创新工作的开展。 因此,“四有”不仅是推动铸造企业进行创新的原始动力,也是铸造企业更好进行创新的工作的指导方针,所以创新型的铸造企业应具备“四有”素质。 铸造种类 为铸造技术使用最多的材料。 砂模铸造法(Sand Casting) 利用砂作为铸模材料,依不同成份的砂可再细分为湿砂模铸造法(Green Sand Mold)、表面干砂模铸造法(Dry Sand Mold)等等,但并非所有砂均可用以铸造。 好处是成本较低,因为铸模所使用的沙可重复使用;缺点是铸模制作耗时,铸模本身不能被重复使用,须破坏后才能取得成品。 金属模铸造法(Die Casting) 利用熔点较原料高的金属制作铸模。其中细分为重力铸造法、低压铸造法和高压铸造法。 受制于铸模的熔点,可被铸造的金属也有所限制。 失蜡法(Investment Casting、Lost-wax casting) 这方法可以为外膜铸造法和固体铸造法。 先以蜡复制所需要铸造的物件,然后浸入含陶瓷的池中并待干,使以蜡制的复制品覆上一层陶瓷外膜,一直重复步骤直到外膜足以支持铸造过程(约1/4寸到1/8寸),然后熔解模中的蜡,并抽离铸模。其后铸模需要多次加以高温,增强硬度后方可用以铸造。 此方法具有良好的准确性,更可用作高熔点金属(如钛)的铸造。但由于陶瓷价格颇高,而且制作需要多次加热和复杂,故成本颇为昂贵。
2025-07-01
-
什么是砂型铸造及其工作原理
什么是砂型铸造及其工作原理 砂型铸造工艺采用的技术可以生产几乎任何设计的形状部件,包括非常大的部件和带有内部通道的部件。根据所需的公差、设计复杂性、数量、工具可用性或交货时间,对于任何特定产品,都会有更优化的铸造或金属加工工艺。Fanovo 能够使用砂型工艺制造所需配置的铸件 沙子被用作模具材料。沙子被压实在模型周围,形成一个两部分的模具,形成一个与要铸造的部件形状相同的空腔。机器成型 在 Fanovo 铸造厂,小型和中型铸模都是由机器准备的。对于大批量生产,使用模板模型,上模模型附在铝板上,下模模型附在板的另一侧。板位于上模和下模之间。砂的捣实可以用机器完成。孔是使用芯子制造的。 手工夯实 手工捣砂取决于操作人员的技能。精度通常较差,这通常通过宽松的加工余量来弥补。重复性和表面光洁度较差。 Fanovo Industries 的砂型铸造工艺: 铸造砂通常由二氧化硅颗粒(SiO2)、5–20% 粘土或膨润土和水 (2–8%)。 沙子是用手工或机器铸造的,周围有一个木制或金属模型,可以取出以在沙子中留下所需形状的空腔。为了方便这一点,模具通常被分成两个或多个部分,模型呈锥形(5 毫米 m-1)。出品率为40–50%,铸件重量从100克到100吨不等。 通过模具上半部分和下半部分成型的浇注盆浇口、流道、冒口和内浇口系统,可以进入模腔以使熔融金属进入。 型芯用于在铸件上形成孔。在移除模型后,将它们放置在分体模具中。通常,型芯采用干砂造型技术制造。型芯砂与油、有机粘结材料和水混合。它们在型芯盒中成型,然后取出并在 170–230 ˚C 下烘烤。一种较新的型芯制造方法是通过通入 CO 来粘合型芯2通过这。 从使用手动“震压”等设备的机器成型到大型工业设备,生产率范围很广。设备和工具成本总是很高。 化学粘合砂(硅酸钠/CO2铸造工艺(英语:Cold casting process)可生产尺寸精度高的硬模,但对模型加工误差的容忍度不高。砂子不易回收。 材料: 大多数金属和合金(钛和钨等活性和难熔金属除外)都可以在空气中砂型铸造。 铸铁 (Fe/1.5–5%C) 在 1200–1480 ˚C 下铸造。灰铸铁含有片状石墨颗粒,具有良好的振动性能。但这会损害强度和延展性。通过将石墨变成危害较小的球状或球形形式,可以恢复大部分延展性。这可以通过在铸造前用少量镁接种熔体来实现。 由于熔点较高,钢并不适合用作铸造合金。 法诺沃铸造厂的第二大铸造合金是铝基合金。铝/硅合金是最易铸造的合金,其中共晶成分(12% 硅)最为有利。铝铸件的主要问题是凝固过程中收缩率相对较高。 铜基合金是用砂型铸造并添加了锌、锡和铅制成的。 铸造铸铁时,造型材料中添加了煤粉;这种绿砂是黑色的。使用“天然”砂(含有粘土的硅砂矿床,或沉积矿床,粘土作为其自身的“天然”粘合剂)时,会发现其他颜色。例如,“布罗姆斯格罗夫红”是一种流行的天然造型砂,直接从地下挖出并运送到工厂。这种绿砂是红色的。 设计: 1.模型的尺寸和形状必须考虑到相对收缩量和凝固时可能发生的形状变化。 一些铸造合金的近似收缩量。2.铸件的形状应允许从最远的部分向后逐渐凝固。当壁厚变化必不可少时,通过应用较大的半径来改善过渡,。小半径或尖角会在成品铸件中产生应力集中器,也可能妨碍凝固过程中的正常进料。局部较大的横截面会产生热点,熔融金属仅在相邻区域冻结后才会凝固,从而产生缩孔。在外表面应用半径或偏移肋条可缓解此问题。低熔点成分会导致热裂,因此使用 S 形辐条。图案必须成形,才能得到所需形状的铸件
2025-07-01
-
砂型铸造工艺、应用、材料
砂型铸造是制造业中最古老、最常用的金属铸造工艺之一。它使用混合砂制作模具,然后将熔融的金属倒入模具中,从而制造出复杂的金属零件。由于其适应性强,砂型铸造广泛应用于汽车、航空航天、建筑、农业等众多行业。 砂型铸造的工作原理? 砂型铸造是在耐高温的砂型混合物中制作凹模或型腔。该工艺首先制作一个模型,通常由木材、金属或塑料制成,用于模拟成品部件的外部形状。将模型放入砂箱(一种类似盒子的容器)中,并用混合了粘合剂的砂子将其包裹。取出模型后,砂子会保留一个与所需部件形状相符的型腔。 为了使熔融金属流动,模具中设计了浇口和冒口系统。这些通道将液态金属从浇口杯引导至型腔,并有助于排出空气。当熔融金属倒入模具中时,它会随着冷却和凝固而呈现出型腔的形状。 最后,通过破碎或分离砂型取出铸件。浇口或冒口区域多余的金属则通过切割或打磨去除。最终结果是与原始模型几何形状相匹配的金属部件。砂型铸造概念虽然简单,但需要注意细节并控制砂型成分、温度和浇注速率等变量,才能获得始终如一的良好效果。控制变量等于成功。 砂型铸造 什么是砂型铸造工艺? 以下是一般流程: 模式:创建或获取最终部件的样板。可采用单件或分件(如果复杂)。 模:将模型放入烧瓶中,并在其周围填充特制沙子。沙子含有二氧化硅、粘土或其他粘合剂以及水分,用于保持形状。取出模型后,会留下空腔。 核心(如果需要):如果需要内部空腔或复杂的几何形状,则将由树脂砂或其他材料制成的型芯放置在模具中以形成内部通道。 浇注系统:设计并添加浇注系统、浇口杯、流道和冒口,以保证金属流动并排出空气。合适的浇注系统可以减少紊流和缺陷。 熔炼和浇注:将金属(铝、铁、钢或青铜)放入熔炉中熔化。达到合适的温度和成分后,通过浇注系统将其倒入模具中。 冷却凝固:让金属在砂型中冷却凝固。冷却速度会影响晶粒结构和机械性能。 抖落和整理:清除砂粒,露出铸件。通过切割、打磨或机械加工去除浇口材料和多余的金属。如有需要,进行表面处理或热处理。 这就是砂型铸造的工作原理。 使用的材料 砂型铸造可采用多种不同的金属和合金,每种金属和合金的选择取决于特定的性能或成本。常用的金属包括铝、铸铁、球墨铸铁、钢、青铜和黄铜。铝合金用于汽车零部件等轻量化应用,而铁和钢则用于发动机缸体和齿轮等重型部件。 砂子本身通常是高纯度硅砂,并混合了粘土、硅酸钠或合成树脂等粘合剂。这些粘合剂有助于砂子在压力和高温下保持形状。砂子的类型也会影响表面光洁度和透气性,从而影响最终铸件的质量。 还可以在砂型中添加添加剂来增强特定性能。煤粉可以改善表面光洁度,各种化学物质可以控制水分含量或减少膨胀缺陷。整体材料的选择是获得理想铸造效果的关键。 工具和设备 您需要一个砂箱来盛放砂型,一个与零件匹配的模型,以及一个芯盒(如果需要芯子)。夯锤和气动工具会将模型周围的砂型压实,以获得精确的型腔。浇口和冒口切割器会形成金属流动和排气的通道。 熔炉(感应炉)将金属熔化到合适的温度。铸造浇包将熔融的金属从熔炉输送到铸模。合适的安全装备(耐热服、面罩、手套)可以保护工人免受高温金属和烟雾的伤害。 诸如落砂台、磨床和喷丸机等附加工具将有助于完成精加工过程,并使铸件获得一致的表面效果。 技术 砂型铸造有多种类型,可满足不同的需求。 湿砂铸造 使用粘土粘合的湿砂,制造成本低廉。 干砂铸造 烘烤模具以增加强度和精度。 树脂砂 使用合成粘合剂来获得更稳定的模具和更精细的表面。 免烘烤成型 使用室温下硬化的化学粘合剂。每种方法在成本、精度和速度方面各有优势,因此砂型铸造在许多应用中被广泛使用。 应用与行业 砂型铸造的灵活性和成本使其成为许多行业必不可少的工艺。在 汽车工业 它生产气缸盖、发动机缸体和其他轻质铝部件。 航天 工业界使用砂型铸造来制造特种合金的原型和小批量零件。 农业设备 和 工程机械 使用大型铸铁和铸钢件以提高耐用性和强度。 船舶, 轨 和 发电 还使用砂型铸造来铸造小型和大型零件。 艺术家 和 雕塑家 使用砂型铸造制作金属艺术品和雕像。砂型铸造能够制造复杂的形状,且材料易得,因此广泛应用于工业、商业和艺术领域。 随着新型合金和粘合剂的出现,砂型铸造仍将在许多行业中成为关键工艺。 低碳钢的优势和劣势 优势: 适应性:可以制造从小支架到大型发动机缸体的任何尺寸和形状的零件。 廉价工具:图案可以用相对便宜的木材或塑料制成。 多种材料:可以铸造多种金属和合金以满足机械或热要求。 适应:通过对砂型和浇口系统的简单改变可以实现快速变化,适合低到中等产量运行。 可回收砂:使用的大部分沙子可以回收利用,从而减少浪费和成本。 劣势: 粗糙表面处理:与压铸或熔模铸造相比,砂铸表面粗糙,可能需要后期处理。 较低的尺寸精度:模具的压缩性和膨胀性可能导致尺寸变化或更严格的加工余量。 更长的生产周期:每个模具都是一次性使用的,冷却时间可能很长,对于大批量生产来说很慢。 劳动密集型:尽管实现了机械化,但模型设置、模具准备和落砂仍需要熟练的劳动力,这会增加成本。 通过权衡这些因素,您可以决定砂型铸造是否符合您的预算、质量和产量要求。好好考虑一下吧。 公差和质量控制 由于模具膨胀、砂型移动和热变形等因素,砂型铸造很难达到严格的公差要求。铸造厂采用受控的砂型混合、一致的捣打和精确的浇注温度,以最大程度地减少偏差。CAD 和仿真工具可以预测材料流动和凝固过程,并帮助在生产前识别问题区域。铸件制造完成后,可以使用 X 射线、超声波和渗透探伤等无损检测方法检测缺陷。工艺控制和检测规程可确保铸件满足最终性能要求。 常见缺陷及预防 常见的砂型铸造缺陷有 多孔性, 热泪, 误运行 和 夹杂物气孔是由滞留气体引起的,因此适当的排气和除气是关键。热裂是由金属凝固不均匀引起的,因此控制冷却速度和使用冷铁会有所帮助。浇注不足是由于流动性不足或浇注温度低,因此需要炉子控制和浇口设计。夹杂物是由熔体中的污染物引起的,可以通过过滤和清洁熔炼方法将其最小化。彻底的缺陷分析可以提高砂型铸造的效果。 关于砂型铸造的最终思考 砂型铸造因其灵活性、材料范围和成本优势,仍然是一种可行的制造工艺。通过了解该工艺及其优势和局限性,制造商可以优化生产,并获得服务于全球各行各业和应用的高质量金属零件。
2025-07-01
-
压力铸造及压铸模结构简介
一、压力铸造定义及特点 压铸:将熔融状态或半熔融状态的金属浇入压铸机的压室,在高压力的作用下,以极高的速度充填在压铸模(压铸型)的型腔内,并在高压下使熔融或半熔融的金属冷却凝固成型而获得铸件 压铸优点: 1、尺寸精度高,表面粗糙度低 2、材料利用率高 3、可成型结构复杂、薄壁深腔零件 4、压铸件组织致密,具有较高的强度和硬度 5、生产效率极高,适合大批量生产 6、可以嵌铸其他材料的零件 压铸缺点: 1、压铸件容易出现气孔,高温时气孔内气体膨胀会使压铸件表面鼓泡 2、模具费较高,不适合小批量生产 3、压铸机尺寸受限,受机台锁模力和装模尺寸限制难以压铸大型压铸件,对于内凹复杂的铸件,压铸生产也较为困难 4、压铸合金种类受限,由于使用温度限制,高熔点合金(如黑色金属)压铸模寿命低 压铸合金材料选用原则: 1、能满足产品使用场景的性能要求 2、具有足够的高温强度和可塑性,热脆性要小 3、结晶温度范围小,流动性好,产生气孔、缩孔的趋向小 4、尽可能小的收缩率,产生热裂、冷裂、变形的趋向小 5、与型腔壁产生物理-化学作用倾向性小 6、加工性能好,有一定抗蚀性 目前常用的压铸合金有锌合金、铝合金、镁合金、铜合金、锡合金、铅合金 二、压铸件结构要求 压铸件结构设计时,要考虑以下几点: 1、薄壁铸件的致密性更好 壁厚增加,则内部气孔、缩孔等缺陷也随之增加,在保证铸件有足够强度和刚度的前提下,应尽量减少厚度并保证均厚2、壁面相连接位置,应尽量设计圆角连接,避免应力集中3、脱模角度尽量大,部分面积小的锌合金平面可以做到零度拔模4、结构设计上避免深且小的孔、窄而深的槽 产品分型面选择时要考虑如下原则: 1、应选择易于型腔加工的分型方案,并尽量减少抽芯机构 2、为尽可能使压铸件开模后留在动模,设计时应使压铸件对动模型芯包紧力大于对定模型芯包紧力,而铸件对型芯的包紧力大于铸件收缩对型芯的包紧力 3、侧抽芯尽量设置在动模,这样在开模时,抽芯和脱离定模可以同时进行,简化模具结构,否则必须先完成抽芯动作后,才能从主分型面分型 4、避免分型面影响铸件尺寸精度,重点尺寸部位、形位公差要求高的部位应设置在同一半模内 5、分型面应避免与铸件的机加工基准面相重合 6、考虑铸件外观要求来选择分型面 7、分型面应选择有利于填充成形的位置,同时建议设置在金属液最后充填的部位,便于产品排气排渣 8、分型面的选择应便于嵌件和活动型芯的安装 三、压铸机结构 压铸机主要分为热室压铸机和冷室压铸机,热室压铸机基本只有卧式款式,冷室压铸机则分为卧式、立式、全立式 四、压铸模具结构 压铸模的系统架构 一、成型系统 由型腔、固定型芯、活动型芯等组成 二、浇注系统 由直浇道、横浇道、内浇口等组成 三、排溢系统 由溢流槽、排气槽等组成 四、推出系统 由推出元件(推杆、推管、卸料板等)、复位元件(复位杆、斜滑块等)、限位元件(限位块、限位钉等)、导向元件(导柱、导套等)、结构元件(推板、推杆固定板等)组成 五、抽芯系统 由 成型元件(侧型芯、镶件等)、运动元件(侧滑块,斜滑块等)、传动元件(斜销、齿条、液压抽芯器等)、锁紧元件(锁紧块、楔紧块等)、限位元件(限位块、限位钉等)组成 六、支承系统 由定模座板、定模板、动模板、动模支承板、模座、推出板、导向零件等组成 七、加热/冷却系统 由加热、冷却油路/水路组成 下面对各个部分做一个简单介绍: 1、成型系统 成型系统:构成成形空腔以形成压铸件几何形状的零件称为成形零件,其决定了压铸件的质量和精度,也决定了压铸模的使用寿命,成型系统包括型腔、固定型芯、活动型芯等 成型系统分为整体式和镶拼式(组合式)结构 整体式即型芯和型腔均直接在模板上加工成型 镶拼式则型腔和型芯由整块材料制成,然后装入模板的模套内,再用台肩或螺栓固定 整体式由于结构加工量大,不易维修,难以热处理和表面处理,只适用于批量小、型腔浅、精度要求低和合金熔点低的模具或试验模 压铸模中广泛使用的还是镶拼式的成型结构 镶拼式成型系统设计原则: 1、应使成型零件便于加工并保证尺寸精度、配合精度和结构强度 2、避免产生锐边和薄壁 3、镶拼间隙方向与出模方向应一致 4、应便于维修和调换 5、不妨碍铸件外观,有利于飞边去除 2、浇注系统 浇注系统主要由直浇道、横浇道、内浇口组成,压铸机的类型不同,浇注系统也有所不同,区别如下: 直浇道:从模具浇注系统入口到横浇道直接的通道 对于冷室压铸机来说,直浇道主要由压铸机的压室和压铸模上的浇口套组成,在直浇道上的那一段合金凝料称为余料对于热室压铸机来说,直浇道一般由压铸机上的喷嘴和压铸模上的浇口套、分流锥组成浇口套(唧嘴):形成直浇道的圆套型零件,一般嵌在定模座板上,一端与喷嘴相接,一端与定模镶件相接,采用浇口套可以节省模具钢且便于加工分流锥:正对直浇道装配,使金属液分流并能平稳改变流向的圆锥形零件,用于调整浇道的截面积,改变金属液的流向,对于直径比较大的分流锥,可在中心或沿中心对称位置设置推杆横浇道(流道):从直浇道的末端到内浇口前段的通道 其作用是将金属液从直浇道引入内浇口,并可以借助横浇道中的大体积金属液来预热模具,当铸件冷却收缩时用来补缩和传递静压力,有时横浇道可划分为主横浇道和过渡横浇道横浇道设计要点: 1、横浇道的截面积应该从直浇道到内浇口保持均匀或逐渐减小,不可急速变化,建议出口处截面积比进口处减小10%-30% 2、对于扩张式扇形横浇道,其入口处与出口处的比值一般不超过1:1.5,开口角需<90° 3、横浇道应平直或略有反向斜角,以免产生卷气或流态不稳4、对于小而薄的铸件,可以利用横浇道或扩展横浇道的方法来使模具达到热平衡,加开盲浇道,容纳冷污金属液、涂料残渣和气体 5、横浇道截面积在任何情况下都不应小于内浇口截面积 6、多型腔时,尽量采用对称的布局形式,并使得各型腔的填充工艺条件尽量一致,尽可能在相同的时间内同时填满各个型腔,当各型腔的压铸件种类不同时,各个内浇口截面积应单独计算确定,同时截面积初始尺寸选小一些,以便后续试模调整修正 内浇口:横浇道末端到型腔的一段浇道 浇口的分类主要有以下几种: 1、侧浇口 开在模具的分型面上,从最大轮廓处的外侧或内侧进料 一般适用于板类压铸件或型腔不太深的盘盖类和壳类零件,有一定深度的产品一般采用端面搭接式进料 优点:模具设计和结构简单,浇口去除容易,普遍应用与压铸产品上 缺点:外侧直接进料时,金属液容易首先封住分型面,从而造成型腔内的气体难以排出而形成气孔2、直接浇口(顶浇口) 直浇道直接开设在壳型或筒型压铸件底部外侧中心部位的一种浇注系统形式,与铸件连接处即为内浇口,也是浇注系统中截面积最大的地方,便于压铸终了保压时的补缩 优点:金属液流动状态好,流程短,排气通畅,且浇注系统、溢流槽和压铸件在分型面上的投影面积之和最小,模具结构紧凑,水口渣包料少,受力均匀 缺点:压铸时和直浇道连接处形成热节(铸件内比周围金属凝固缓慢的节点或局部区域,也可以说是温度最高,最后冷却的地方,易产生缩松缩孔和收缩应力集中的部位) 浇口残余大,去除比较困难,一般采用机械加工方法去除 由于金属液从直浇道大端进入型腔后直冲型腔,容易造成粘模,影响模具寿命3、中心浇口 是直接浇口的一种特殊形式,在产品中心附近有不大的通孔时,内浇口就设在通孔处,中间设置分流锥,金属液在压铸件底部以环状进入型腔 优点:有着与顶浇口同样的优点,同时直接浇口进料处不会因热节产生缩孔 缺点:去除浇口比较困难 4、点浇口 也是直接浇口的一种特殊形式,对于某些外形基本对称或呈中心对称、壁厚均匀且较薄、形体不大,高度较小且顶部中心处无孔的压铸件,可采用点浇口 优点:有着与顶浇口同样的优点,同时直接浇口进料处不会因热节产生缩孔 缺点:浇口截面积小,金属液流速大,容易产生飞溅现象,并在内浇口附近产生粘模现象 同时为了取出浇注系统的冷凝料,在定模上需要增加一个分型面,采用定距顺序分型机构,模具结构比较复杂5、环形浇口 主要应用于圆筒形的压铸件,a为直接进料的环形浇口,b为切向进料的环形浇口,使用较少 优势:具有十分理想的充填状态,排气顺畅,可在环形浇口和溢流槽处设置推杆,使产品上不留顶针印 缺点:金属原材料消耗较大,去除浇口较困难,且模具往往要设计为对开式,模具结构复杂 6、缝隙浇口 类似于侧浇口,不同点为内浇口的深度方向的尺寸大大超过宽度方向的尺寸,浇口状似长条缝隙 优点:充填状态较好,有利于压力传递 缺点:为了便于加工,模具一般也需要对开式侧向分型内浇口位置设计原则: 1、导入的金属液应首先充填型腔深处难以排气的部分,而不宜立即封住分型面造成排气不畅 2、应使流入型腔的金属液尽量减少曲折和迂回,避免产生过多的涡流,减少包裹气体 3、内浇口位置应使金属液的流程尽可能短,以减少填充过程中金属液能量的损耗和温度的降低 4、浇口位置应使金属液流至型腔各部位的距离尽量相等,以达到各个分割的部位同时填满和凝固 5、一般设置在压铸件的厚壁处,有利于金属液充满型腔后补缩流的压力传递 6、尽量采用单个内浇口而少用分支浇口,避免多路金属液汇流时相互冲击,必须采用多个分支浇口时,应注意防止多路金属液互相撞击形成涡流,产生裹气或氧化物夹杂以及冷隔等压铸缺陷 7、应考虑到减少金属液在型腔中的分流,防止分流的金属液在汇合处造成冷接痕或冷隔现象 8、应尽量避免金属液直冲型腔,减少动能损失,防止冲蚀和产生粘模,尤其应避免冲击细小型芯或螺纹型芯,防止产生弯曲和变形 9、一般情况,铸件较薄且要求外观轮廓清晰时,宜采用较薄的内浇口,以保证足够的填充速度,但内浇口过薄会导致金属液喷射严重且容易被杂质堵塞局部内浇口,同时进入型腔的金属液容易产生雾化现象,从而堵塞排气通道,使铸件表面出现麻点和气孔 对于一般形状零件,建议采用较厚的内浇口,有利于降低填充速度,也有利于补缩压力的传递,但内浇口太厚会使得充填速度过低导致降温大,可能导致铸件轮廓不清,去除内浇口也麻烦 10、凡精度要求较高、表面粗糙度值低且不加工部位不宜布置内浇口,防止去除浇口后留下痕迹 11、内浇口的设置应考虑模具温度场的分布,以便使型腔远端充填良好 内浇口尺寸设计常用经验公式: Ag-内浇口截面积,m3 G-通过内浇口的金属液质量,kg ρ-液态金属密度,kg*m3 Vg-充填速度,m/s t-型腔的充填时间,s 内浇口尺寸的经验数据如下: 3、排溢系统 排溢系统主要由溢流槽、排气槽组成,和浇注系统一起,在型腔充填过程中是一个不可分割的整体 溢流槽(积渣包):用于将前端的冷凝金属液、气体、氧化残渣、其他杂质推挤至模具型腔外的凹槽,以提高模具局部温度,达到良好有序的充填过程,当溢流槽开在动模侧上,溢流槽上可以放置推杆(顶针)溢流槽位置设置原则: 1、在合金液最后填充的部位上设置溢流槽 2、当遇有型芯阻碍而使合金液分成两股(或两股以上)时,在型腔的附近要设有溢流槽 3、对于局部厚大凸台的型腔部位应设有溢流槽 4、当具有局部薄的型腔部位时,为了增加该处型腔的热量,在该处附近应设有溢流槽 5、溢流槽应开设在内浇口两侧或金属液不能顺利充填的死角区域,起到引流充填的作用 6、尽量避免在一个溢流槽上开设多个溢流口,避免金属液回流 7、设计溢流槽时要注意便于后处理去除,且尽量不放置在外观面,避免后处理影响产品外观,原则上保证产品性能要求下尽量少加溢流槽,试模确定产品外观后再考虑增加,减少后处理工作量 溢流槽容积尺寸建议:溢流槽截面形状主要有以下三种:排气槽:用于将型腔内的气体推挤至模具型腔外部的气流沟槽,利于产品充填,一般与溢流槽配合,布置在溢流槽后端加强排渣排气效果 排气槽设计要点如下: 1、排气槽的位置选择基本与溢流槽相同,尽可能设置在分型面上,以便脱模 2、排气槽尽量设置在同一半模上,方便加工 3、排气量大时,可增加排气槽数量或宽度,切忌增加厚度,以防金属液堵塞或向外喷溅 4、溢流槽尾部应开排气槽 5、排气槽的总截面积一般不小于内浇口总截面积的50%,但不得超过内浇口总截面积 6、采用曲折的排气槽时,为了减少排气阻力,在转折宽度可取正常排气槽宽度的两倍,正常排气槽的长度不小于15-25mm7、直通的排气槽可做成阶梯状,加深到1.5倍厚度,或制成带15′的斜度,或将分型面上的投影形状制成扩大的喇叭形状排气槽的尺寸推荐:4、顶出系统 顶出系统主要由推出元件(推杆、推管、卸料板等)、复位元件(复位杆、斜滑块等)、限位元件(限位块、限位钉等)、导向元件(导柱、导套等)、结构元件(推板、推杆固定板等)组成, 作用是将铸件从成型零件中脱出推出距离一般根据动模凸出分型面的高度来确定,如下图 当H≤20mm时,St≥H+K 当H>20mm时,1/3H≤St≤H K为安全系数,取3-5mm 有分流锥的模具,如分流锥凸出分型面的高度大于成型部分的高度,则应按分流锥的高度来考虑推出距离推杆推出部位设置要点: 1、推杆应合理分布使铸件各部位受力均匀 2、铸件有深腔和包紧力大的部位,要选择推杆的直径和数量,同时推杆兼排气、溢流作用 3、避免在铸件重要表面或基准面上设置推杆,可在溢流槽上设置推杆 4、必要时,在浇道上应合理布置推杆,有分流锥时,分流锥位置应设置推杆 5、推杆应设置在脱模阻力较大的部位,如成型件侧壁的边缘、型芯或深孔周围,但至少应远离型芯侧边3mm,避免壁厚太薄削弱型芯强度 6、推杆应设置在推力承受能力较大的部位 7、推杆不宜过细,直径<8mm时,应采用阶梯型推杆 8、一般情况下,为了保证压铸件成型的平整度,推杆推出端面的组装高度应高出成型零件h,但h不宜过大,否则压铸件可能黏附在推杆上,h一般取0.05-0.1mm,不超过0.4mm 对于薄壁压铸件,不影响装配前提下,可适当增加推出部位的厚度,或使推杆端面低于型芯h1=0.05-0.1mm,不超过0.2mm,以增加压铸件强度9、尽量避免在安放嵌件或活动型芯的部位设置推杆,否则必须设置推出机构的预复位机构 10、带有侧抽芯机构的模具,推杆推出的位置应尽量避免与侧型芯复位动作发生运动干涉 11、分流锥位置的推杆端部应设计成分流锥的形状,以与分流锥同时起分流的作用12、在压铸件斜面上设置推杆时,为防止推出过程中产生相对滑动,应在推杆推出端斜面上开设多个平行横槽13、当压铸件不允许有顶针印且包紧力不大时,可在横浇道和溢流槽处设置推杆 14、推杆位置应避开水路 推杆种类:a所示端面为平面形,为最常用形式 当推出段直径<8mm时,可将尾部加粗,如b所示 c、d所示的端面为圆锥形,顶出的同时,提供钻孔所用的定位锥坑并兼起分流锥作用 e所示的是设置在加强肋一侧的推杆,其一侧构成加强肋的一部分成型侧面,同时又兼起推出的作用 f所示为钩料推杆,在卧式冷室压铸机上,没有推出浇道余料的外伸动作时,利用钩料推杆将浇道余料从浇口套中脱出,再与压铸件上的推杆4同步将余料、浇道、压铸件一起推出,如下图所示。5、抽芯系统 抽芯系统:当压铸件外侧或内侧存在倒扣无法直接脱模时,需要将对应特征位置零件设计成活动零件,开模时先将活动零件抽出,在将产品推出脱模,合模后又将抽出的活动零件复位,完成上述动作的机构即抽芯机构 抽芯系统一般由成型元件(侧型芯、镶件等)、运动元件(侧滑块,斜滑块等)、传动元件(斜销、齿条、液压抽芯器等)、锁紧元件(锁紧块、楔紧块等)、限位元件(限位块、限位钉等)组成抽芯系统设计原则: 1、型芯尽量设置在与分型面相垂直的动(定)模内,利用开模或推出动作抽出型芯,尽可能避免采用庞大的抽芯机构,尽可能少用定模抽芯 2、在较细长的活动型芯位置上,尽量避免受到合金液的直接冲击 3、型芯抽出到最终位置时,滑块留在导滑槽内的长度一般不小于滑块长度2/3,以免合模插芯时,滑块发生倾斜造成事故 4、利用开合模运动作为抽芯机构的传动时,应注意在合模时活动型芯的复位与推出元件的干扰,一般要求在活动型芯投影面积范围内不设置推出元件,液压抽芯应严格操作程序或设安全装置 5、在滑块平面上,一般不宜设置浇注系统,若必须在其上设置浇注系统,应进行合理布局,加大滑块平面,不使浇注系统布置在滑块和模体的导滑配合部分,一面影响侧滑块的正常运行,并使配合部分有足够的热膨胀间隙 6、压铸模很少使用内滑块或斜顶块,因为压铸模生产温度高,模具膨胀量大且渣滓较多,斜顶与导向块之间间隙非常小,在生产过程中非常容易发生卡滞问题,导致模具无法连续生产 斜销抽芯机构结构图:斜销抽芯机构动作过程:弯销抽芯机构结构图:弯销抽芯机构动作过程:斜滑块抽芯机构结构及动作过程:齿轮齿条抽芯机构结构图:6、加热/冷却系统 加热系统: 主要用于预热模具,或对模温较低区域进行局部加热 采用高的浇注温度时,熔融合金流动性好,铸件表面质量好,但熔融合金中气体溶解度和氧化加剧,压铸模寿命短,对于铝合金也易产生粘模现象 采用低的浇注温度时,熔融合金流动性差,铸件表面质量差,但为采用深的排气道提供了条件,从而改善排气条件,收缩也小,减少因壁厚不均匀在厚部产生缩孔和气孔的可能性,也可减轻对模具的溶蚀和粘模,从而延长了模具寿命 各种合金的推荐浇注温度见下:加热方法有以下几种: 1、火焰加热,如喷灯、喷枪,方法简单,成本低廉,但火焰加热会使模体表面或凸起的局部区域过热,而对模体内部或凹入的局部区域加热不足,过热会导致压铸模型腔软化,降低模具寿命; 2、用热介质循环加热,利用冷却水道通入热油、热蒸汽等加热介质对模具进行循环加热,其制作简单,成本低廉; 3、用模具温度控制装置加热,如电阻加热器、电感应加热器、红外线加热器,采用模具温度控制装置不但能有效的控制模具温度,还能延长模具寿命; 4、管状电热元件加热法,一般安置在动、定模套板或支撑板上,按实际需要设置电热元件的安装孔 冷却系统: 压铸过程中,合金液凝固并冷却到推出温度,所释放的热量被模具吸收,为了保持传入模具的热量和从模具中传出的热量达到平衡,往往需要冷却系统进行强制冷却,合理设计冷却系统可提高压铸生产率、改善铸件质量及延长模具使用寿命。 模具冷却方法主要有以下两种: 1、水冷 在模具内设置冷却水通道,通过水通入模具带走热量,水冷效率高,易控制,是最常用的压铸模冷却方法,但是冷却水的杂质或水垢易堵塞水道。 2、风冷 对于压铸模中特别细长的小型芯或难以采用水冷的部位,可采用压缩空气的风冷方式 冷却水道设计要点: 1、冷却水道要求布置在型腔内温度最高、热量比较集中的区域,流道要通畅、无堵塞现象 2、冷却水道至型腔表面的距离应尽量相等,水道壁离型腔表面的距离一般取12-15mm 3、冷却水道孔的直径一般取8-16mm,视压铸件大小和壁厚而定 4、设计时应考虑使水道出入口的温差尽量小 5、冷却水道通过两块或多块模板或零件时,要求采用密封的措施防止泄露,多采用橡胶密封圈或密封片进行密封 6、水管接头应尽可能设置在模具的下方或操作者的对面一侧,其外径尺寸应统一 五、压铸过程及工艺参数 压铸分为以下四个过程: a、合模 b、压射 c、开模 d、推出及复位其中最关键的是压射过程:从压射冲头开始移动到型腔充满保压(热室压铸机),或者至增压结束(冷室压铸机)为止 压力、速度是压射过程中两个重要工艺参数,记录压射过程中压力和速度的动态特性曲线称为压射过程曲线 压射过程中,随着压射冲头的位移,速度和压力都是按设定的模式变化 液态金属在压室与型腔中的运动可分解成四个阶段,目前使用的大中型压铸机为四级压射,中小型压铸机多为三级压射(将第二、第三阶段合为一个阶段),而热室压铸主要以两个阶段压射为主(一速升液和二速填充) 第一阶段 :从压射冲头起始位置至越过浇料口位置 特征:低压低速、运动平稳,防止金属液从浇料口溢出,有利于气体排出 第二阶段 :从越过浇料口位置到金属液充满至内浇口处 特征:压力增大,压射冲头速度加快,越过浇料口位置后,压射压力提高,压射冲头速度加快,金属液充满压室至浇注系统,该阶段应防止卷气,尽量避免金属液提前进入型腔 第三阶段 :从金属液充满内浇口处至型腔完成充满 特征:压射压力再次升高,压射速度略有下降,充型速度最快,由于内浇口处截面积大幅度缩小,流动阻力剧增,压射速度略有下降,但此时充型速度最快 第四阶段 :充型结束 特征:压射冲头停止运动,压力剧增,达到全过程的最高值,充满型腔后,增压压力对凝固中的金属液进行压室,压射冲头可能稍有前移,金属液凝固后,增压压力撤除,压射过程结束压铸时,影响金属液充填成型的因素很多,主要有压力、速度、温度、时间等参数 1、压力 压射力:压铸机压射缸内工作液作用于压射冲头,使其推动金属液充填模具型腔的力,称为压射力 压射力 Pg-压射缸内的工作压力,Pa D-压射缸直径,m 比压:压室内压铸合金液单位面积上所受的力,即压铸机的压射力与压射冲头截面积之比,充填时的比压称为压射比压,有增压机构时,增压后的比压称为增压比压,它决定了压铸件最终所受压力和这时所形成的胀模力的大小 压射比压 胀模力:压铸过程中,金属液充填型腔时,给型腔壁和分型面的压力称为胀模力,压铸过程中,最后阶段的增压比压通过金属液传给压铸模,此时的胀模力最大,为了防止压铸模被胀开,锁模力要大于胀模力在合模方向上的合力 胀模力 A-压铸件、浇口、排溢系统在分型面上的投影面积之和 选择合适的比压可以改善压铸件的力学性能 铸件在较高的比压下凝固,其内部微小孔隙或气泡被压缩,内部组织的致密度和强度较高,但随着比压过高,铸件的塑性指标下降,强度也会下降,力学性能下降 较高的压射比压可以提高金属液的充模能力,防止铸件产生冷隔或充填不足的缺陷,轮廓较为清晰,但比压过大,会加剧金属液对型腔的冲击,加速模具的磨损,一般在保证压铸件成形和使用要求的前提下,选用较低的比压 2、速度 速度有压射速度和内浇口速度两种形式 压射速度(冲头速度):压射冲头推动金属液的移动速度,也就是压射冲头的速度 内浇口速度(充型速度):金属液通过内浇口处的线速度称为内浇口速度 内浇口速度 -内浇口速度(m/s) -压射速度(m/s) d-压射冲头(或压室)直径(m) -内浇口截面积( ) η-阻力系数,一般取0.3-0.6 -合金的液态密度(kg/ ) 压射力大,内浇口速度高;合金液密度大,内浇口截面积大,内浇口速度低,在压铸过程中,通过调整压射速度,改变压射冲头直径、比压及内浇口截面积等,都可以直接或间接调整内浇口速度 3、温度 压铸的温度主要指合金浇注温度和压铸模的温度 合金浇注温度指的是从压室进入型腔时压铸合金液的平均温度,经验证明,在压力较高的情况下,应尽可能降低浇注温度,最好在压铸合金液呈粘稠“粥状”时压铸,这样可以减少型腔表面温度的波动和压铸合金液对型腔的冲蚀,但对含硅量高的铝合金,则不宜使压铸合金液呈“粥状”时压铸,否则硅将大量析出,以游离状态存在于铸件内部,使加工性能变坏。 各种压铸合金的浇注温度,因其壁厚和结构的复杂程度而不同,其值可参考下表。压铸模在使用前要预热到一定的温度,预热的作用一是避免高温压铸合金液对冷压铸模的热冲击,延长压铸模使用寿命,而是避免压铸合金液在模具中因激冷而很快失去流动性,使铸件不能顺利充型 压铸模工作温度可参考下表4、时间 压铸参数时间:1、充填时间 2、增压时间(建压时间) 3、保压时间(持压时间) 4、留模时间 充填时间:金属液从开始进入模具型腔到充满型腔所需要的时间称为充填时间,其长短取决于压铸件大小、复杂程度、内浇口截面积、内浇口速度等 增压时间:金属液充满型腔瞬间开始至达到预定增压压力所需时间,也就是增压阶段比压由压射比压上升到增压比压所需的时间,从压铸工艺角度来说,这一时间越短越好,但性能较好的机器最短增压时间也不少于0.01s 保压时间:从金属液充满型腔到内浇口完全凝固,冲头压力作用在金属液上所持续的时间,如保压时间不足,铸件最后凝固的厚壁处因得不到补缩而产生缩松缩孔缺陷,如保压时间过长,铸件已经凝固,冲头还在施压,这时的压力对铸件的质量不再起作用,生产中常用保压时间如下表留模时间:从保压结束到开模的这段时间,若留模时间过短,由于铸件温度高,强度尚低,脱模时易变形或开裂,留模时间过长则影响生产率,还会因铸件温度过低使收缩大,导致抽芯及推出铸件阻力增大,热脆性合金还会引起铸件开裂,各合金的常用留模时间如下压铸生产中工艺参数选择可按下列原则进行: 1、如果生产条件有利于合金在型腔中充填,有利于合金对压铸件的缩松或缩孔进行补缩,则可以选用较小的比压,反之,则应选用较大的比压 2、铸件壁越厚,结构越复杂,则压射力应越大 3、铸件壁越薄,结构越复杂,压射速度应越快 4、铸件壁越厚,保压留模时间应越长 5、铸件壁越薄,结构越复杂,模具浇注温度应越高 六、压铸缺陷分析 压铸件的缺陷很多,其形成的原因是多方面的,其分类主要可分为以下三类 1、表面缺陷,压铸件外观不良,如拉伤、流痕、冷隔、欠铸、毛刺等 2、几何缺陷,压铸件形状、尺寸与技术要求有偏离,如变形、尺寸超差、挠曲等 3、内部缺陷,如气孔、缩松、缩孔、裂纹等 影响因素一般有以下几点: 1、合金料引起,原材料及回炉料的成分、干净程度、配比,熔炼工艺等 2、压铸机引起,压射力、压射速度、锁模力是否足够,压铸工艺参数选择是否合适等 3、压铸操作引起,合金浇注温度、熔炼温度、涂料喷涂量及操作,生产周期等 4、压铸模引起,模具结构、浇注系统尺寸及位置、顶杆及布局、冷却系统等原因 5、压铸件设计引起,压铸件壁厚、圆角、脱模斜度、热节位置、深凹位等
2025-07-01
-
离心铸造
离心铸造 离心铸造是将液体金属注入高速旋转的铸型内,使金属液做离心运动充满铸型和形成铸件的技术和方法。由于离心运动使液体金属在径向能很好地充满铸型并形成铸件的自由表面;不用型芯能获得圆柱形的内孔;有助于液体金属中气体和夹杂物的排除;影响金属的结晶过程,从而改善铸件的机械性能和物理性能。 简介 离心铸造是将液体金属注入高速旋转的铸型内,使金属液做离心运动充满铸型和形成铸件的技术和方法。由于离心运动使液体金属在径向能很好地充满铸型并形成铸件的自由表面;不用型芯能获得圆柱形的内孔;有助于液体金属中气体和夹杂物的排除;影响金属的结晶过程,从而改善铸件的机械性能和物理性能。 技术分类 根据铸型旋转轴线的空间位置,常见的离心铸造可分为卧式离心铸造和立式离心铸造。铸型的旋转轴线处于水平状态或与水平线夹角很小(4°)时的离心铸造称为卧式离心铸造。铸型的旋转轴线处于垂直状态时的离心铸造称为立式离心铸造。铸型旋转轴线与水平线和垂直线都有较大夹角的离心铸造称为倾斜轴离心铸造,但应用很少。 应用领域 生产效益显著的铸件有: ①双金属铸铁轧辊; ②加热炉底耐热钢辊道; ③特殊钢无缝钢管; ④刹车鼓、活塞环毛坯、铜合金蜗轮; ⑤异形铸件如叶轮、金属假牙、金银介子、小型阀门和铸铝电机转子。 离心铸造最早用于生产铸管,随后这种工艺得到快速发展。国内外在冶金、矿山、交通、排灌机械、航空、国防、汽车等行业中均采用离心铸造工艺,来生产钢、铁及非铁碳合金铸件。其中尤以离心铸铁管、内燃机缸套和轴套等铸件的生产最为普遍。对一些成形刀具和齿轮类铸件,也可以对熔模型壳采用离心力浇注,既能提高铸件的精度,又能提高铸件的机械性能 。 生产产量很大的铸件有: ①铁管:世界上每年球墨铸铁件总产量的近1/2是用离心铸造法生产的铁管 ②柴油发动机和汽油发动机的汽缸套 ③各种类型的钢套和钢管 ④双金属钢背铜套,各种合金的轴瓦 ⑤造纸机滚筒。 技术特点 技术特点 优点: ①几乎不存在浇注系统和冒口系统的金属消耗,提高工艺出品率; ②生产中空铸件时可不用型芯,故在生产长管形铸件时可大幅度地改善金属充型能力,降低铸件壁厚对长度或直径的比值,简化套筒和管类铸件的生产过程; ③铸件致密度高,气孔、夹渣等缺陷少,力学性能高; ④便于制造筒、套类复合金属铸件,如钢背铜套、双金属轧辊等;成形铸件时,可借离心运动提高金属的充型能力,故可生产薄壁铸件。 缺点: ①用于生产异形铸件时有一定的局限性。 ②铸件内孔直径不准确,内孔表面比较粗糙,质量较差,加工余量大; ③铸件易产生比重偏析,因此不适合于合金易产生比重偏析的铸件(如铅青铜),尤其不适合于铸造杂质比重大于金属液的合金。 制作工艺 金属过滤、浇注温度、铸型转速、渣下凝固、涂料使用、铸件脱型、浇注系统、浇注定量等是在离心铸造生产中必需确定或解决的工艺问题,因为它们直接影响着铸件的质量和生产效率。 金属过滤 有些合金液中有较多难于除去的渣滓,可在浇注系统中放各种过滤网清除渣子,如泡沫陶瓷过滤网、玻璃丝过滤网等。 浇注温度 离心铸件大多为管状、套状、环状件,金属液充型时遇到的阻力较小,又有离心压力或离心力加强金属液的充型能力,故离心铸造时的浇注温度可较重力浇注时低5~10°C。 铸型转速 是离心铸造时的重要工艺因素,不同的铸件,不同的铸造工艺,铸件成形时的铸型转速也不同。 过低的铸型转速会使立式离心铸造时金属液充型不良,卧式离心铸造时出现金属液雨淋现象,也会使铸件内出现疏松、夹渣、铸件内表面凹凸不平等缺陷; 铸型转速太高,铸件上易出现裂纹、偏析等缺陷,砂型离心铸件外表面会形成胀箱等缺陷,还会使机器出现大的振动、磨损加剧、功率消耗过大。所以,铸型转速的选择原则应是在保证铸件质量的前提下,选取最小的数值 熔渣利用 为克服厚壁离心铸件双向凝固所引起的皮下缩孔缺陷,可在浇注时把造渣剂与金属液一起浇入型内,熔渣覆盖在铸件内表面上,阻止内表面的散热,创建由外向里的顺序凝固条件,消除皮下缩孔。同时,造渣剂还可起精炼金属液的作用。 浇注造渣剂的方法是:浇注时在浇注槽中撒粉状造渣剂;把熔融的渣滓与金属液一起浇入型内。 涂料使用 离心金属型用涂料的组成与重力金属型铸造相似。浇注细长离心铸件时,由于清除铸型工作面上的残留涂料较为困难,故涂料组成中粘结剂在高温工作后的残留强度应尽量低,以便于清除。 铸件脱型 为了提高生产效率,在保证质量的前提下,应尽早进行铸件的脱型。有时为了防止铸件的开裂,脱型后的铸件应立即放入保温炉或埋入砂堆中降温。对一些不易脱型又需缓冷防裂的铸件,则可在铸型停止转动后立刻把有铸件的铸型从离心铸造机上取下,埋入砂堆中缓慢冷却,至室温时在行脱型。 浇注系统 离心铸造时的浇注系统主要指接受金属的浇杯和与它相连的浇注槽,有时还包括铸型内的浇道。设计浇注系统时,应注意以下原则: ①浇注长度长、直径大的铸件时,浇注系统应使金属液能较快地均匀铺在铸型的内表面上; ②浇注易氧化金属液或采用离心砂型时,浇注槽应使金属液能平衡地充填铸型,尽可能减少金属液的飞溅,减少对砂型的冲刷; ③浇注成形铸件时,铸型内的浇道应能使金属液顺利流入型腔; ④浇注终了后,浇杯和浇注槽内应不留金属和熔渣。如有残留金属和熔渣,也应易于清除。 浇注定量 离心铸件内径常由浇注金属液的数量决定,故在离心浇注时,必须控制浇入型内的金属液数量,以保证内径大小。在浇注包架子上安装压力传感器进行离心浇注自动定量和保温感应炉电磁泵定量浇注也已在生产中应用。
2025-07-01
-
液态模锻
液态模锻,又称挤压铸造、连铸连锻,是一种既具有铸造特点,又类似模锻的新兴金属成形工艺。它是将一定量的被铸金属液直接浇注入涂有润滑剂的型腔中,并持续施加机械静压力,利用金属铸造凝固成形时易流动和锻造技术使已凝固的硬壳产生塑性变形,使金属在压力下结晶凝固并强制消除因凝固收缩形成的缩孔缩松,以获得无铸造缺陷的液态模锻制件。人们通常把这种方法称之为液态模锻。 液态模锻(挤压铸造)可分为两大类:直接挤压铸造(direct squeeze casting)和间接挤压铸造(indirect squeeze casting)。直接挤压工艺类似于金属模锻,压力直接施加于液态金属的整个面上;间接挤压工艺与压铸接近,压力通过浇道间接作用于液态金属上。间接挤压铸件内部质量低于直接挤压件而高于压铸件。 简介 液态模锻,又称挤压铸造、连铸连锻,是一种既具有铸造特点,又类似模锻的新兴金属成形工艺。它是将一定量的被铸金属液直接浇注入涂有润滑剂的型腔中,并持续施加机械静压力,利用金属铸造凝固成形时易流动和锻造技术使已凝固的硬壳产生塑性变形,使金属在压力下结晶凝固并强制消除因凝固收缩形成的缩孔缩松,以获得无铸造缺陷的液态模锻制件。人们通常把这种方法称之为液态模锻。 液态模锻(挤压铸造)可分为两大类:直接挤压铸造(direct squeeze casting)和间接挤压铸造(indirect squeeze casting)。直接挤压工艺类似于金属模锻,压力直接施加于液态金属的整个面上;间接挤压工艺与压铸接近,压力通过浇道间接作用于液态金属上。间接挤压铸件内部质量低于直接挤压件而高于压铸件。 特点 液态模锻是铸锻相结合的一种新兴工艺,它既具有铸造工艺简单、生产成本低、可制件形状复杂的优点,又具有模锻产品晶粒细密、组织均匀、力学性能好、成型精度高的特点。主要有以下几点: (1)在成形过程中,尚未凝固的金属液自始至终在等静压的作用下结晶凝固、流动成形;已凝固的金属层在压力下发生塑性变形,具有热变形组织,晶粒细小,组织均匀,同时压力使制件外侧紧贴模具内壁,使工件形状尺寸准确。 (2)由于先结晶凝固层产生塑性变形,要消耗一部分能量,因此金属液经受的等静压不是定值,而是随着凝固层的增厚而下降。 (3)固液区在压力作用下,发生强制性的补缩,从而能消除制件内部缩孔疏松等缺陷,提高了制件力学性能。 (4)与普通热模锻相比,金属液的流动性远大于固体金属,充填模具型腔的性能较好,能够用一副模具一次成形形状比较复杂的制件。 (5)密度、力学性能基本等同模锻件。 技术参数 在液态模锻的成形过程中,涉及的工艺参数主要有:液锻比压、加压开始时间、保压时间、模具预热温度、金属液浇注温度、模具润滑等。研究工作者结合产品对液态模锻的工艺参数作了大量有益探索现将几个主要工艺参数总结如下: 液锻比压 单位面积上的压力。压力的作用是使金属液在等静压的作用下凝固,并消除制件气孔、缩孔疏松等缺陷,从而使制件获得较好的内部组织和较高的力学性能。比压过低时,未凝固的金属液在先凝固的封闭壳层内自由凝固,又液态金属比固态金属收缩值大,使最后凝固部分得不到补缩而产生缩孔疏松,使产品致密性下降;比压过高,虽对提高产品性能有一定的作用,但同时会降低模具寿命,增加设备动力消耗及费用。 开始加压时间 开始加压时间即施压前金属液在模具内的停留时间。开始加压时间应以金属液的温度不低于固相线温度为准,因而金属处于熔融状态时加压效果最好。开始加压时间若过晚,金属自由凝固外壳厚度增大,增加了变形抗力,减小了加压效果,影响制件质量。实际上由于现行的液压机合型行程较长、速度较慢,模具与合金液温差较大等原因,加压只可能过迟,而不会过早。因此应当在金属液浇入金属型型腔后立即加压。 金属液浇注温度 合金的浇注温度对零件的成形质量有很大的影响,浇注温度过高,容易产生缩孔,模具受热浸蚀愈严重,加压时,容易出现毛刺,可能会把模具卡住,甚至会导致模具出现热裂纹;浇注温度过低,会因为合金凝固过快而产生浇不充足或冷隔缺陷,但是如果此时的比压比较大,就可以很好地避免因温度低所造成的缺陷,所以一般都会通过提高比压来降低浇注温度,这也正是液态模锻的高比压低温稳定成形的突出优点。因为液态模锻时希望消除气孔、缩孔缩松,而在较低温度浇注时,气体易于从合金熔液内部逸出,易于消除气孔;且一旦施压后,还能使金属液同时进人过冷状态,获得同时形核的条件,进而获得等轴晶组织。通常根据合金的液相线温度和凝固范围来确定理想的金属液浇注温度,一般控制在最低值,对于薄壁件或热容量较小的合金浇注温度可取高些,反之取得低些。 保压时间 保压时间是指从金属液充满模具型腔后开始到撤消压力为止的时间段,这段时间实际上是金属液在压力下实现凝固、结晶和补缩的时间。保压时间的长短,主要取决于制件断面的最大壁厚, 一般取0.5~1Sec/mm。保压时间过短,即制件心部尚未完全凝固即卸压,会因制件内部得不到补缩而产生缩孔、缩松等缺陷;保压时间过长,增加了制件内应力,可能造成制件因凝固收缩而产生热裂,影响制件表面质量。 模具预热温度 液态模锻是将高温液态金属直接浇入模具中,凝固时放出的热量使模具型腔表面温度迅速升高,在模具模壁方向存在温度差而产生热应力,故模具在使用前要进行均匀预热,以减小温差,降低热应力。模具温度过高,容易发生制件粘模,使脱模困难;模具温度过低,则使制件质量难以得到保证,如产生冷隔和表面裂纹等缺陷。 冷却 液态模锻卸压后,一般应立即脱模,故制件的出模温度较高。为了防止高温的制件空冷时在薄壁与厚壁的交界处产生裂纹,应将出模后的制件立即用沙子或者土埋上,待冷却到 150℃以下时再取出空冷。 技术优缺点 (1) 液态模锻可以消除制件内部的气孔、缩孔和疏松等缺陷,产生局部的塑性变形,使制件组织致密。加之,在压力下结晶,还有明显的细化晶粒、加快凝固速度和使组织均匀化的作用。因而液锻件的机械性能一般要高于普通铸件,而接近甚至达到同种合金的锻件水平,同时它没有锻件中通常存在的各向异性。 (2) 液态金属在压力下成形和凝固,使制件和型腔壁贴合紧密。模具之间的气隙减小,使导热系数增加,凝固速度加快,有利于晶粒细化。且液锻件有较高的表面光洁度和尺寸精度,其级别能达到压铸件的水平。所以,液态模锻已成为近净成形的一种重要方法。 (3) 液锻件在凝固过程中,各部位处于压应力状态下,有利于制件的补缩和防止制件裂纹的产生。因而,液态工艺的实用性较强,适用的合金不受铸造好坏的限制。它不仅适用于铸造性能好的合金,而且也适用于铸造性能不好的变形合金。既可用于铝、铜、镁、锌等有色合金,还可用于铁、钢等黑色金属,还用于镍、钴等高温合金,甚至可用于复合材料和铸石等方面。 (4) 液态模锻是在压力机或挤压铸造机上进行的。便于实现机械化、自动化、可大大减轻人的劳动强度,改善车间的生产环境。 (5) 由于凝固层产生塑性变形,要消耗一部分能量,因此金属液经受的等静压值不是固定不变的,而是随着凝固层的增厚下降。 (6) 液态模锻的固液区在压力的作用下,发生强制性的补缩。对于薄壁和复杂的零件,因为制件的冷凝速度快,有时来不及加压就凝固了,因而,此工艺的应用将受到限制。 [3-4] 发展 液锻技术的新发展有以下几个方面: (1)发展半固态成形技术 半固态加工利用了金属从液态向固态或固态向液态过渡(即固液共存)时的特性,综合了凝固加工和塑性加工的长处,即加工温度低,比如铝合金,与凝固加工相比,加工温度可降低 120℃;变形抗力小;可一次加工成形状复杂且精度要求高的零件。半固态技术在欧美国家及日本发展很快。 (2)用液锻工艺生产复合材料 日本进行了铝—碳纤维、铝—不锈钢丝纤维等增强复合材料的液锻研究,英国进行了可选择性的纤维、盘形刹车测径器等液锻研究,还研究了为改善以 Al-A12 为金属母体成分铸造颗粒性能时液锻工艺的作用,国内也进行了马达连杆轴瓦双金属液锻工艺的研究等。 (3)液锻工艺的新发展是液态挤压 液态挤压是在液态模锻的基础上,结合热挤压变形的特点而发展起来的一种液态成形工艺,其成形过程为:将液态金属直接浇入挤压桶内,借助挤压冲头对未凝固液态或准凝固金属施以压力,使其在压力下发生流动、结晶和凝固。随后,挤压成形模口处的准凝固金属经受断面缩减的大塑性变形,一次成形出管、棒、型材类制品。挤压的主要特征是利用压力下结晶和热挤压减轻大变形原理,使制件性能改善,其组织为热挤压组织。 利用液态挤压工艺也可以直接制备金属基复合材料管、棒、型材类制件,由此突破了现有复合材料成形方法均需二次变形,即先成形出复合材料坯体,再经挤、轧等工艺制成管、棒型材的限制,可以减少成形工序,降低成本,有望成为成形高性能复合材料的管、棒、型材的一条新途径。 国外液态模锻技术已经进入大规模工业应用范围。但是,由于我国尚未开发出适合液态模锻工艺要求的专用或者通用液态模锻机械,在一定程度制约了该技术的发展,影响先进工艺技术的实施。因此,发展我国液态模锻产业的最关键问题是尽快开发和生产自己的高效、低价位模锻机系列,并针对具体工作进行工艺技术的开发和试生产。 随着科学技术的飞速发展,新的工艺、新的技术不断涌现,传统制造业正面临这严重的挑战。作为铸、锻结合的液态模锻技术,也要面对更多的技术要求和市场的激烈竞争,因此液态模锻技术也相应的要完善和继续发展。
2025-07-01
-
消失模铸造优势
消失模铸造是一种近无余量的液态金属精确成型的技术,是将与铸件尺寸形状相似的石蜡或泡沫模型粘结组合成模型簇,刷涂耐火涂料并烘干后,埋在干石英砂中振动造型,在负压下浇注,使模型气化,液体金属占据模型位置,凝固冷却后形成铸件的新型铸造方法。其功能区域主要包括白区、黄区和黑区,以及模具、塑料珠粒、模型(束)等辅助暂存区。消失模铸造生产线可通过科学合理的设备配置,实现先进的自动化控制,提高了生产效率,为企业节省了大量的劳动力,并真正体现了铸造行业绿色革命的含义。消失模铸造特别适用于普通铸造难以完成的多分型、多芯子、几何形状复杂和复杂型腔的铸件,消失模铸造的优势是车间环境状况的良好,消失模铸造的优势主要有以下几点 : (1)聚苯乙烯泡沫塑料在低温下对环境完全无害,且密度小,制模劳动强度低,制模工序容易实现清洁生产。 (2)消失模铸造可以简化了制芯、砂处理过程,工序间搬运量小,劳动强度显著降低,并容易实现机械化和自动化生产。 (3)干砂造型时无粘结剂、流动性好、无混砂设备,简化了振实填砂设备和1旧砂回收设备,车间内尽可能地减少了噪音和粉尘。 (4)由于不用型芯,同时实现了铸件的精确化,清理工作量大大减轻,车间的噪音,粉尘也相应减少。 (5)由于造型无需粘结剂,废气的处理量比较少。浇注时白模受热分解、气化,产生的废气可抽真空进入湿法除尘器进行水浴处理,然后再汽水分离后排放到大气当中。 (6)铸造型砂可在生产线各设备间密闭处理,真正做到 “空中无粉尘,地上无散砂”。
2025-07-01
-
消失模铸造全面知识汇总
1. 消失模铸造的界定 略 2. 消失模铸造目前有三种工艺方法 消失模铸造自上世纪八十年代初进入我国以后,曾经历了很长一段时间的浑沌期,行业内曾流传着一句话:看似简单的消失模铸造,一看就会,一做就废! 作为一门独立的技术方法,消失模铸造应该有属于自己的理论基础,正是因为我们忽略了对消失模铸造特有理论的研究,很长一段时间借用传统铸造的理论解读消失模铸造,才使我们进入了与实际截然性反的误区。 当我们给自己提出消失模铸造应该研究什么的课题时,我们才发现,消失模这个名字起的很贴切!非常之好!三个字就罩定了主题! 简单的说,要研究模消失过程中的三个问题:模消失的方式,模消失的时间,模消失的量。 2.1消失模铸造模的消失方式 消失模铸造的模是以碳、氢元素为主的化合物,它的消失方式有两种。 1) 气化消失; 2) 燃烧消失。 消失模铸造浇注过程中如果液态金属能封闭住直浇道,不使空气进入型腔,在高温无氧的条件下模型的泡沫材料就会由大分子裂解成小分子,由固态转变为气态通过涂层被真空吸走排出。 如果浇注的过程中有空气被吸入型腔,泡沫材料就会发生猛烈的燃烧。这个常识我们每个人都有,泡沫燃烧会产生大量的游离碳和碳束。这是因为空气中的氧浓度不充足,活泼的氢原子与氧结合,而使碳游离。游离的碳和碳束溶于液态金属,会发生弥漫性增碳,碳偏析光亮碳,使铸件的材质,品质和加工性能发生改变。 灰口铁和球铁的碳浓度较高,吸碳倾向不明显,碳钢的碳浓度很低,贪婪的吸收碳,泡沫燃烧产生的游离碳就成了铸钢件的致命杀手。所以,早期很少有人能做好消失模的铸钢件,特别干小型铸钢件。 我们知道了游离碳发生的原理,我们也知道了游离碳的危害,我们也知道游离碳的发生不可避免,只要有一种方法能使燃烧产生的游离碳排出型腔,不溶于液态金属里就可以防止增碳缺陷的发生。于是,我们尝试着从冒口中直接浇注,宽敞的冒口通道使泡沫燃烧产生的气体和游离碳得以比较充分排出,解决了铸件严重的增碳问题。开放式浇注方法是从解决排碳入手的,所以,我们称之为消失模铸造的排碳法,多用于需要冒口补缩的厚大件和铸钢件。与此相对应的封闭式浇注方法,是希望创造高温无氧的条件,使泡沫气化消失,所以我们称之为消失模铸造的气化法。 2.2 消失模铸造模的消失时间 消失模铸造模的消失实际上是液态金属对泡沫型的置换。既然是两种物质的置换,在一入一出的时间关系上就有三种表现形式: A、 液态金属的充型速度快于泡沫模型的消失速度; B、 液态金属的充型速度与泡沫模型的消失速度同步; C、 液态金属的充型速度慢于泡沫模型的消失速度。 如果液态金属的充型速度比泡沫模型的消失速度快,先于泡沫彻底消失而充满型腔,液态金属就会淹埋泡沫材料的胶状物,而使泡沫继续气化产生的气体无法排出型腔,凝固在铸件中,产生气孔缺陷,这是我们不希望发生的。我们希望,泡沫材料的消失速度(不论是气化还是燃烧)要与液态金属充型同步或先于液态金属充满型腔之前消失。这样,泡沫型的消失对液态金属的充型毫无影响。所以,我们在总结消失模铸造浇注系统设计原则时,提出了要控制直浇道的截面积,平衡液态金属的给进速度和泡沫型的气化速度。最好的方法就是先把泡沫模型烧掉或是先点燃。 江西丰远铸钢赵光总经理在浇注不锈钢铸件时,大胆的尝试了先把泡沫模型烧一下,继而浇注钢水的方法获得了成功,开创了国内消失模铸造先烧后浇方法的先河。这种方法的目的是创造液态金属置换泡沫模型的时间差,我们称之为空壳铸造。 2.3 消失模铸造模的消失量 这个问题会在其它文章中专门讨论。本文只综述几个概念,在消失模铸造工艺中,我们希望泡沫型彻底的消失,不留下任何痕迹。消失模铸造的气孔缺陷,增碳缺陷,皱皮缺陷等特有缺陷,都是消失模铸造的模,在消失过程中留下的痕迹。我们通称为:气化缺陷。 气化缺陷克服的措施是一致的,概括的说是七个字:一低、二高、三透气。即:使用密度较低的泡沫模型,温度较高的铁水和通透性能良好的涂料。在这段文章里我们概述了消失模铸造发展到今天所产生的三种工艺方法和理论基础,三种方法是: 1)消失模铸造气化法“封闭式浇注”; 2)消失模铸造排碳法“开放式浇注”; 3)消失模铸造空壳法“先烧后浇”。介绍三种工艺方法的目的,是要说明消失模铸造发展至今已不是单一的方法,方法不同对涂料性能的要求不同。 3. 消失模铸造涂料的功能和性能 传统铸造型砂靠粘结剂定型,形成型腔。粘结剂及其它辅助材料在接触高温金属液后,会瞬间产生高压气体,充满型砂间隙并在液态金属和型腔壁之间形成一层气膜,阻挡液态金属进入型砂间隙。微观环境下,这一瞬间液态金属不能接触到型砂,只能接触到气膜,称之为液气浸润。因此,在传统的铸造中,型腔的型砂表面可能很粗糙,铸件的表面却很光滑,就是有气膜存在的缘故。 消失模铸造浇注过程中抽真空,尽管泡沫模型气化,涂料中的有机粘结剂遇热碳化和型砂中结晶水气化都可以产生大量气体,由于受负压的牵拉无法形成砂粒间隙的气体高压和液体金属与涂层间的气膜,液态金属直接与涂层紧密接触,称之为液固浸润。所以消失模铸造可以克隆出泡沫模型表面的细微结构。珠粒间融合的不甚好的龟背纹结构和气塞的痕迹都可以清晰铸造出来,形成与传统铸造截然不同的消失模铸造铸件的表面特征。因此,有人戏称消失模铸造和人不一样,在人类有时丑妈妈可以生出漂亮的孩子,消失模铸造要想提高铸件的表面质量,必须提高模具的精度,首先做出理想的泡沫模型,劣质模具,做不出漂亮的铸件。 消失模铸造不能形成砂间隙的气体高压和气膜,如果没有涂层屏蔽,在负压的牵拉下液态金属必然会渗入砂子间隙,包裹型砂,产生严重的铁包砂,无法形成与泡沫相一致的精细铸件。同时,如果没有涂层的屏蔽,也无法形成型腔和砂子间隙之间的压力差,干砂就会垮箱。所以,消失模铸造的涂料主要功能是:屏蔽型砂形成型腔。 我们都知道,泡沫模型(特别是薄壁壳体类模型)自身强度不高,容易受到损伤和发生变形。刷过涂料并烘干以后,泡沫模型如同穿上一层装甲,强度提高很多,通常能够有效的克服自身强度不够而发生变形的缺点。所以,消失模铸造涂料的辅助功能是:提高泡沫模型的强度,保护模型,防止受到损坏和发生变形,提高消失模铸造的可操作性能。 为了获得良好的涂层,消失模铸造的涂料在涂挂制作过程中必须具备如下的性能(工作性能): (1) 涂料的悬浮性能; (2) 涂料的触变性能; (3) 涂料的流动性能; (4) 涂料的粘着性能; (5) 涂料的强度(低温强度或干强度)。 浇注过程中,消失模铸造涂层要接受高温金属液的强力冲刷,泡沫模型材料猛烈气化和燃烧,产生大量的可燃气体和游离碳及碳束。高温下的涂层既要保持良好的强度,又要净化型腔使泡沫型的气化产物排出,又不能使液态金属透过涂层,从而获得无内在缺陷的高品质铸件,在如此恶劣的工艺条件下,要求涂层又必须具备如下性能(工艺性能): 1) 良好的高温强度; 2) 恰当的通透性能; 3) 较小的热膨胀系数; 4) 隔冷保温性能; 5) 合金化性能。 浇注结束,铸件清整过程中,涂层还必须具备: 1) 自剥脱(溃散)性能; 2) 易抛丸清理特性。 消失模铸造涂料的特有性能的优劣,源自正确的配方,优质材料和合理制作。三个环节缺一不可! 3.1 消失模铸造涂料的配方 消失模铸造水基涂料价格低廉,安全可靠,性能稳定,运输方便,清洁少污染,易于制作和涂挂操作,应用广泛,是消失模铸造的首要选择。本文讨论的是消失模铸造水基涂料。 消失模铸造水基涂料由耐火骨料和辅助材料两个部分组成。其中骨料占90-92%,附料占8-10%。附料中除商品涂料需加消泡剂和防腐剂,主要成分只有三种: (1) 粘结剂; (2) 悬浮剂; (3) 润湿剂。 粘结、悬浮、润湿三剂的分类或者划分,其实是学者们的主观行为。客观上已入围消失模铸造涂料附材的物质中,个体的作用都不是单一的。比如:膨润土和羧酸基纤维素(CMC),通常是做粘结剂使用,但在消失模铸造水基涂料中,因为它们不能克服聚苯乙烯泡沫模型光滑表面的憎水性,用它们做粘结剂,涂料无法涂挂在泡沫模型的表面上。但是,膨润土的细小颗粒在水中膨胀,形成水化膜,粘浮在CMC的大分子链上,搭接成立体网状结构,阻止耐火骨料颗粒堆积下沉,从而提高了浮料的悬浮性能,所以,把这两种有粘结功能的物质作为悬浮剂使用。 作为粘结剂的物质,首先必须具有对泡沫模型光滑表面的亲和力,同时要有良好的低温强度和高温强度。不管国内涂料还是国外涂料,首要选择的粘结剂是:聚乙酸乙烯乳液(俗称白乳胶)。白乳胶能显著提高涂料粘度的同时,会降低涂料的悬浮性。但是,白乳胶对泡沫模型表面有轻微的腐蚀作用,提高了涂料的润湿性,从而提高了涂料的附着性能,也就是提高了涂料的涂挂性能。这是其它任何粘结剂不能与之相比的。依据这一特点,乳白胶的加入量要根据泡沫模型表面的粗糙程度来确定。光如境面的泡沫模型,涂料中白乳胶的加入量可以高达5-6%,电阻丝切割拼接的泡沫型,涂料中白乳胶的加入量可以少至1%以下。 消失模涂料粘结剂的选择不仅要考虑低温强度,也要重视涂料高温强度。白乳胶有很好的低温强度,但在300℃-400℃时就会发生焦化,失去粘结剂作用,因此,选用白乳胶作粘结剂的同时,要辅助加入高温粘结剂。 诸多的高温粘结剂中,磷酸盐类物质,特别三聚磷酸钠不仅有很好的高温性能,还是一种润湿剂,能降低涂料的表面张力,提高涂挂性能和流动性能。三聚磷酸钠的高温强度表现在能促进耐火骨料低温烧结陶瓷化,形成极具抗高温金属液冲刷的陶瓷壳。 三聚磷酸钠可以使耐火骨料聚集沉淀,破坏涂料的悬浮性能,在配比上宜少不宜多。 涂料中的各种辅料是有交互作用的,有的是正交互作用,适当的配比可以起到协同增强的效果,有的是负交互作用,配比失衡会起到拮抗抵消的作用。所以,涂料配方的效果,不是各种辅助材料独立效果、效应之和。合理的配方总效应大于独立效应之和,不合理的配方的总效应小于独立效应之和。 4. 中温区的通透性有实用价值 几乎所有关于消失模铸造涂料的文章,都把消失模铸造涂料的“涂层通透性能”狭隘的说成“透气性”。 生产实践中我们可以观察到,浇注后的涂料改变了颜色,成了花花脸或黑脸包公,这是因为泡沫模型在型腔内猛烈燃烧产生的游离碳透过了涂层,排出了型腔,附着在涂层表面所致。 我们还可以看到,当涂层通透的孔隙的截面积大的时候(许多文章描述的是透气性强),或真空的绝对值抽得过高,或液态金属温度高,表面张力小的时候,液态金属会透过涂层渗入到砂粒间隙里,形成消失模铸造特有的粘砂现象:铁包砂。 消失模铸造特有的铁包砂的特点是:涂层依然完整存在,液态金属是透过涂层孔隙渗入砂粒间隙的,不是从涂层的裂缝钻出而进入砂粒间隙。后者可以铲除掉,铲除粘砂后可以在铸件表面看到清晰的裂缝痕迹。前者则无法清除掉。笔者曾有过经历,在第一次浇注大型冷冲模底板时,为防止塌箱,把真空度抽到了0.08Mpa,铁水温度也很高,结果整个铸件浇成了刺猬状,发生了严重的铁包砂。 上面的现象告诉我们,消失模铸造的涂料不仅能使气体通过,也能使固态的游离碳和液态金属通过,我们称之为通透性能比称之为透气性能更贴切,更准确! 消失模铸造在浇注过程中,涂层内自下而上是三种物态,最下部分是液态的金属,最上的部分是未液化和气化燃烧的泡沫,中间部位是混杂着游离碳和可燃气体的空间,称做气隙间隙。如果用温度来描述三种物态区域,自下而上分别是高温区,中温区和低温区。(见图)有了这种区分的方法,我们可以得出下述的结论: (1)涂层的通透性在低温区没有意义; (2)中温区的通透性决定了涂层是否能排出泡沫消失过程中产生的气体和游离碳; (3)高温区的通透性只有害处,没有益处,如果涂层的通透性在高温区不能封闭,就会使液态金属溢出,导致或发生“铁包砂”。因此我们说中温区的通透性才有实际意义,才是应该研究的课题。 中温区的通透性是如何产生的呢? 对涂料的配方的描述中,我们讲到了消失模铸造的涂料中要加入一定量的有机粘结剂。涂料在烘干过程中水分得以挥发,水分子在挥发过程中留下了细微的、纳米级的孔隙,形成了涂料的低温(常温)的通透性,涂料呈半透膜状态,如同包糖块的蜡纸,只可以使气体分子通过,不能使大于水分子的物质通过。 在浇注过程中,液态金属首先通过辐射和气体对流向泡沫材料传递热量,泡沫遇热收缩成胶样物质,被真空牵拉吸附在涂料壁上(附壁效应),继而在高温作用下气化,形成了气体间隙。当气体间隙的温度达到300-400℃以上的时候,有机粘结剂变性焦化,在混制涂剂过程中有机粘结剂形成的交叉网状结构,形成了网状的通道,涂层就产生通透性能。 涂料的通透性能具备两项工艺参数: 1) 通道孔径截面积的大小; 2) 孔径分布的密度。 两项指标的综合,决定了涂层的通透性能。所以,对涂料通透性能的调节,包括对孔径截面积和密度两项指标的调节。 对通透孔径的调节,是对有机粘结剂的选择来实现。有机粘结剂水解和搅拌后形成的网络结构的粗细(相对而言)决定了通透性孔径的大小。 对通透孔密度的调节,由有机粘结剂加入的量来调节。加入量的比例高,单位面积形成的通透孔道数量就多,反之就少。 在具体应用上,铸铁的流动性好,表面张力低,穿透性强,所以要求涂层通透孔隙截面积小一些,防止发生铁包砂,相对应,铸钢的流动性差,表面张力大,穿透性低,通孔的截面积可以大些。当然这种调整还要配合浇注温度和真空度的高低。 铸件的表面积和重量的比值,我们称之为模数。薄壁件的表面积和重量的比值,比厚大件的比值大。涂层单位面积的通过量,薄壁件要比厚壁件少,所以,在涂料的配制中,薄壁件的有机粘结剂的加入量,在保证涂挂性能的前提下,可以减少加入量。在涂料的配方中,有些粘结剂的加入就是为了调整涂层的通透性能。比如我公司涂料的配方中的BY粘结剂,就是此作用,有些专业的配方中加入的黄麻纤维也是调整涂料通透性的。 5. 浇注系统和铸件本体对涂料性能要求不同 消失模铸造的模型簇由铸件本体模型和浇注系统的泡沫模型组成。浇注过程中液态的金属液首先进入浇口杯和直浇道,再由横浇道分配至内浇道,通过内浇口进入铸件本体。 液态金属在浇注系统内的行进方向是自上而下的。由于金属液的温度高、密度高、落差大,浇注系统的涂料层,特别是浇口杯和直浇道的涂料层要承受高温、高压的金属液的猛烈冲刷。所以,浇注系统的涂料层要求具有良好的热强度,不能被液态金属流冲穿。 整个模型簇需用的金属液都要通过浇注系统,特别是浇杯和直浇道承受的冲刷时间最长。因此,要求涂料层的热膨胀系数要小,避免发生因涂层膨胀产生裂纹和皱褶,被飞流直下的金属液冲破冲垮。 浇注系统的涂层不需要通透性能,此段涂层除了液态金属,几乎无物可排。 液态金属进入铸件的本体型腔以后,主流方向是自下而上,对涂层的冲刷强度减小许多,为了确保铸件的内在质量,所有泡沫模型的气化产物都必须干净彻底的排出型腔,因此,消失模铸件本体的涂料层对抗冲刷能力的热强度要求不高,而对涂料的通透性能要求则极高。 另外,涂料层最终是要被清理掉的,所以涂料层的易剥脱性能,在铸件本体区域也显得很重要。 以上阐述只想说明一个问题,消失模铸件浇注系统和本体对涂料工艺性能的要求是不同的。为获得高品质的消失模铸件,消失模铸造的浇注系统和铸件本体最好使用两种不同配方的涂料。 6. 涂料的骨料不是耐火度越高越好 在判断涂料优劣的时候,我们常常不由自主的把涂料壳(浇注过的)掰碎或捏碎。有些涂料壳即使不是很厚,强度也很高,掰的时候要用力,断裂的时候有清脆的响声,感觉很爽。有些涂料壳拿在手里就感觉硬度不够,好像很暄,断裂时没有清脆的感觉,但是还能结壳。有些涂料壳基本没有烧结,捏碎时结块和粉状物散架。有些涂料根本没有结壳,依然呈粉状物粘附在铸件上,刮划时有散状粉末落下。 使用不能烧结骨料的涂料时候,铸件加工过的表面常常有云雾状,絮状微小夹杂物,在受铁水流冲击,容易形成漩涡的位置,还可以看到明显的铁水流漩涡痕迹。说明涂料没有热强度,没有烧结的耐火骨料微粒被冲入了金属液体。 涂料只有烧结成陶瓷壳才有热强度,烧结温度高的耐火骨料,在较低温度下不能熔融烧结,没有热强度,涂层容易被冲垮,直浇道会变粗,铸件里会进砂。所以,我们说涂料骨料的耐火强度不是越高越好!能低温陶瓷化的涂料骨料才是比较好的骨料。 低温陶瓷化的低温,是相对于铁水的温度而定,通常是400℃-860℃之间。 耐火骨料的陶瓷化需要两个条件: 1) 适当的骨料的烧结温度; 2) 高温粘结的参与。 不同耐火度骨料的合理匹配,可以调整骨料的烧结温度,因此,消失模铸造涂料的骨料,应该是复合型,较高烧结温度的骨料作为抗粘砂的核心成分。较低烧结温度的骨料和高温粘结剂熔融烧结,粘附烧结温度较高的骨料颗粒形成耐火高温的涂层壳,才能有较高的热强度,抵抗液态金属的冲刷。 7. 涂料剥脱性能 有些涂料浇注后牢牢的粘在铸件表面,抛丸清理很困难,有些涂料开箱后自己就剥离,脱落,经抛丸处理脱得干干净净。消失模铸造涂料层的剥脱必须具备如下条件: 1) 涂层与液态金属的酸碱属性相同: 涂料骨料的化学性能有酸性,碱性,中性之分,如,石英粉,锆英粉属酸性骨料,镁砂粉,镁橄榄石粉属碱性骨料,以AL2O3为主体的棕刚玉粉,刚玉粉,高铝矾土等骨料是中性。 金属液体也有酸碱属性之分,如,高锰钢和不锈钢类是碱性金属,灰铸铁和碳钢则是酸性金属。 如果涂料的骨料和液态金属的酸碱属性搞错,则会发生化学粘砂,涂层无法剥脱。 2) 涂层必须烧结成壳耐火骨料有烧结型和非烧结型之分。不烧结的骨料,如单纯使用石墨粉做骨料,涂层无法烧结,成粉状粘浮在铸件表面无法剥脱。骨料只有烧结成壳,才具备了剥脱的基本条件。 骨料的烧结温度,不同于熔点,不同的骨料烧结温度差异很大。如:棕玉粉骨料的烧结温度>1850℃,石英粉的烧结温度>1500℃,铬矿粉的熔点,虽然高达2100℃,烧结温度却只有1450℃。云母粉的烧结温度更低,是250℃。所以,涂层烧结成壳(即陶瓷化)的关键是降低骨料的烧结温度,常用的方法是加入高温粘结剂和骨料配伍使用。加入一定比例的三氧化二铁也能降低骨料的烧结温度。 3) 涂层和金属之间必须有润滑剂消失模铸造液态金属的充型模式是液固浸润,在液态金属和涂层之间不存在气膜。所以,涂层和金属结合非常紧密,难以剥脱属于正常。在碳钢体,通常在800℃时就开箱出件,红彤彤的铸件暴露在空气中,随着铸件降温变暗,涂料壳劈劈啪啪自动剥落,这是因为高温铸件表面在接触空气中氧的时候,形成三氧化二铁薄膜,这层薄膜起到了分离铸件和涂层的润滑剂作用,所以涂层才能脱壳。依据 这个原理,许多学者在涂料的配方中加入>3%的三氧化二铁,希望在高温金属的作用下,三氧化二铁分解成氧和铁,氧再使铸件表面的铁氧化生成新的三氧化二铁,帮助涂层剥落。 当然也有学者加入三氧化二铁的目的,是产生游离氧,借以消耗型腔内,泡沫膜燃烧产生的游离碳,从而克服碳缺陷。因为有真空不停的抽吸牵拉,涂层中的三氧化二铁分解生成的氧无法停留,难以全部和铸件的铁氧化。客观上起到的作用是降低了骨料的烧结点,这也有利于脱壳。 也有一种既经济,效果又好的措施,就是第一遍涂料涂挂熔点和烧结点都比较高的骨料涂料,第二遍涂料涂挂熔点和烧结点都比较低的骨料涂料,以第一遍涂料做脱壳润滑剂。 片面的追求涂料的脱壳性能已经成为历史,现在,对涂料的剥脱性的要求与过去大不相同。因为易于剥脱的涂料,涂料剥落在型砂中会产生大量的粉尘,砂处理系统难以彻底清除,时间一长,会影响型砂的透气性,从而影响铸件质量和工作环境。现在脱壳性能的要求,不是涂层会自动剥脱,而是要随铸件带走,但要易于抛丸清理。 4) 涂料壳和铸件要有较大的膨胀系数差物体受热受冷会有体积变化,体积的变化导致线长度的变化。铸件和涂层在降温冷却的过程中,线收缩率不相一致,金属的收缩率大于非金属涂料壳的收缩率,这个差越大,涂层产生的张力就越大,涂层自动剥离的效果就好,铸钢,特别是高猛钢和高铬钢铸件垂直摆放浇注时的收缩率可以大于3%,涂料壳的张力非常大,剥脱时可以弹出一米多远,常常伤及没有经验的参观者,就是这个道理。如果收缩率的差距小,铸件的尺寸又小,涂料壳常常不易剥脱。 8. 涂料的制作方法,影响使用性能 消失模铸造工艺进入我国的早期阶段,采用试验室的碾砂机碾制涂料,常常因为出料口密封不严而跑汤。碾制一次涂料需要十余个小时,后来笔者借鉴水泥厂球磨机的原理,设计了小型球磨机,用于专门制作消失模涂料,不仅缩短了涂料的制作时间,也大大提高了涂料的工作性能和工艺性能。一些工厂现在依然在使用这种小球磨机研磨涂料,这个发明虽然很小,但确实是消失模铸造涂料制作史上的一个转折点。 我们都知道,消失模铸造涂料成分如果简单分类是由辅料和骨料组成。 附料由不同形状的纤维组成,要像做蛋糕抽打鸡蛋一样,才能把那卷曲的螺旋的等形状的纤维打开,形成复杂立体网状结构,才能发挥完好的悬浮性能,触变性能和流平性能,涂挂性能。所以,涂料制作过程中时间要足够长,即使是高速搅拌,通常两个小时以下也不能达到理想要求,最好四小时以上。 球磨机研磨涂料时,可以使骨料破碎,骨料的新断面,增强了辅料的附着性能,因此也使涂料的悬浮性能更好,笔者亲自动手配制的涂料,久置至水分完全挥发变成涂料饼,也不会出现液固分离,发生固体物沉淀,所以笔者认为,制作涂料最好还是采用研磨和高速搅拌结合,先研磨再搅拌,如果单纯高速搅拌,不会对骨料有破坏功能,所以悬浮性能稍差。 应该强调的是,涂料涂挂一定要在低速搅拌下进行,激发触变特性,涂挂的涂料的流平性也会得到改善,涂层会像锦缎一样,使人看了很舒服。
2025-07-01
有想补充的信息?点我投稿

- 联系我们
- 企业入驻
